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Preface

This book describes the C programming language and software engineer-
ing principles of program construction. The book is intended primarily as
a textbook for beginning and intermediate C programmers. It does not
assume previous knowledge of C, nor of any high-level language, though
it does assume that the reader has some familiarity with computers.
While not essential, knowledge of another programming language will
certainly help in mastering C.

Although the subject matter of this book is the C language, the emphasis
is on software engineering—making programs readable, maintainable,
portable, and efficient. One of our main goals is to impress upon readers
that there is a huge difference between programs that merely work, and
programs that are well-engineered, just as there is a huge difference be-
tween a log thrown over a river and a well-engineered bridge.

The book is organized linearly so that each chapter builds on information
provided in the previous chapters. Consequently, the book will be most
effective if chapters are read sequentially. Readers with some experience
in C, however, may find it more useful to consult the table of contents
and index to find sections of particular interest.

Each chapter is autonomous inasmuch as it covers a single, well-defined
area of the C language, such as scalar data types or control flow. More-
over,the.chapters. themselves.are organized linearly, so that each section
uses information provided in earlier sections. Again, experienced C pro-
grammers may want to skim introductory sections.
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Although this book covers all C features, it makes no claim to being a ref-
erence manual. The organization and pace is designed for those learning
the language rather than those who already know the language. If you
plan to do extensive programming in C, we recommend that you supple-
ment our book with C: A Reference Manual, by Harbison and Steele.

This book describes all features of the C language defined by Kernighan
and Ritchie (known as the K&R standard), as well as all features defined
in the C Standard proposed by the American National Standards Institute
(ANSI). Where the two versions differ, we highlight the difference either
by explicitly describing each version in the text or by describing the ANSI
feature in a shaded box. A list of differences between the two standards
appears in Appendix E. For more information about the ANSI Stan-
dard, you should read the official specification, which you can obtain by
writing to:

American National Standards Institute
1430 Broadway
New York, NY 10018

In addition to using shaded boxes to describe ANSI extensions, we also
use boxes to highlight common errors made by C programmers. These
“Bug Alerts” are intended as buoys to mark places where we and others
have run aground.

The examples in this book have all been tested on three machines: A
PC-compatible Zenith Z-151 running the Microsoft Version 3.0 C com-
piler, an Apollo DN3000 running the DOMAIN C compiler (Version
4.78), and a Sun Microsystems 3/50 computer running tVersion 3.1 of
the Sun compiler. Whenever possible, we have tried to use realistic ex-
amples gleaned from our own experiences. Occasionally we refer to “our
machine”, which means any of these three computers. The most signifi-
cant aspect of “our machine” is that it allocates four bytes for ints.

Appendix A describes all of the runtime library functions defined in the
ANSI standard. Many of these functions are derived from UNIX func-
tions and are present in current C runtime libraries. Be careful, though,
because some ANSI functions behave differently from identically-named
functions in older libraries.

Appendix B shows the syntax of the ANSI C language in the form of
“railroad diagrams.” Each rectangular box in a diagram represents an-
other diagram defined elsewhere. Items that appear in ovals are C key-
words and predefined names that must appear exactly as they are written.
Circles are used to represent punctuation tokens. Unless stated otherwise,
it is always legal to insert spaces and newlines between one item and an-
other.

Appendix C lists all names reserved by the ANSI standard. This includes
keywords, library function names, and type definitions used by the li-
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brary. You should avoid declaring variables that conflict with these
names.

Appendix D lists certain ranges that an ANSI-conformig compiler must
support. This includes, for example, the range of values that must be
representable in a floating—point number.

Appendix E lists the major differences between the ANSI Standard and
the K&R standard. Each entry in this list contains a reference to the sec-
tion in the book where the difference is described. Note that this list is
not exhaustive.

Appendix F contains the source listings for a C interpreter. In Chapter
12, we refer to this program as an example of using good engineering
techniques to produce a large software product.
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Chapter 1

Introduction To Programming

You cannot endow even the best machine with
initiative. — Walter Lippmann, A Preface to
Politics

Although computers are capable of performing complex and difficult op-
erations, they are inherently simple-minded and docile machines. They
must be told exactly what to do, and they must be instructed in a precise
and limited language that they can comprehend. These instructions are
known as software. The machinery that actually executes the instructions
is known as hardware.

At the hardware level, computers understand only simple commands,
such as “copy this number,” “add these two numbers,” and “compare
these two numbers.” These modest commands constitute the computer’s
instruction set and programs written using these instructions are said to
be written in the computer’s machine language.

One of the surprising aspects of computer science is the rich array of use-
ful operations that can be performed by combining these simple instruc-
tions. Unfortunately, it is extremely tiresome to write programs in ma-
chine language because even the simplest tasks require many instructions.
Moreover, in most machine languages, everything—instructions, data,
variables—is represented by binary numbers. Binary numbers are com-
posed.entirely,of zeroes,and,ones (each digit is called a bit, short for “bi-
nary digit”). These programs, consisting of a jumble of zeroes and ones,
are difficult to write, read, land maintain.
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In the 1940s and 1950s, all programs were written in machine language,
or its close cousin, assembly language. Assembly language is a major im-
provement over machine language, although it is only once removed from
the computer’s instruction set. In assembly language, each instruction is
identified by a short name rather than a number, and variables can be
identified by names rather than numbers. Programs written in assembly
language require a special program, called an assembler, to translate as-
sembly language instructions into machine instructions. Today, programs
are written in assembly language only when execution speed is a high pri-
ority.

The vast majority of programs written today are written in languages that
more closely resemble human languages. These languages, called high-
level languages, were first developed in the 1950s and 1960s so that pro-
grammers could write programs in a language more natural to them than
the computer’s restrictive language.

One can view programming languages as lying along a spectrum with ma-
chine languages at one end and human languages, such as French and
English, at the other end (see Figure 1-1). High-level programming lan-
guages fall somewhere in between these extremes, usually closer to the
machine language. High-level languages allow programmers to deal with
complex objects without worrying about details of the particular computer
on which the program is running. Of course programming languages dif-
fer from human languages since they are designed solely to manipulate
information. They are also much more limited and precise than human
languages.

high-level languages

e

4 machine
languages [

i

=

languages

-

assembly languages

Figure 1-1. Language Spectrum. Computer languages lie along a
spectrum with machine languages at one end and
human languages at the other end.
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1.1 High-Level Programming
Languages

Every high-level language requires a compiler or interpreter to translate
instructions in the high-level programming language into low-level in-
structions that the computer can execute. The remainder of this section
applies only to compilers. We describe interpreters in Chapter 12.

A compiler is similar to an assembler, but much more complex. There is
a one-to-one correspondence between assembly language instructions
and machine instructions. In contrast, a single instruction in a high-level
language can produce many machine instructions.

The farther the programming language is from machine language, the
more difficult it is for the compiler to perform its task. But languages that
are far removed from the computer architecture offer two main advan-
tages:

® High-level languages remove the programmer from the
idiosyncracies of each computer architecture.

® Programs written in high~level languages are easier to read and
maintain.

Once a programmer has learned a high-level language, he or she need
not be preoccupied with how the compiler translates programs into a ma-
chine language. As a result, programs written for one computer can be
executed on another computer merely by re~compiling them. This fea-
ture is known as software portability. In Figure 1-2, for instance, a sin-
gle program written in a high-level language is translated into three ma-
chine language programs by three separate compilers.

Another advantage of high-level languages is readability. Their relative
closeness to human languages makes programs not only easier to write,
but easier to read as well. The operation of a well-written program in a
high-level language can be readily apparent to a reader because the sym-
bols and instructions resemble human symbols and instructions rather
than the computer’s internal symbols and instructions. In contrast, even
the best-written assembly language programs must be closely analyzed to
construe their operation. For example, consider the simple C statement,

a = b+c-2;

which assigns the value “b plus ¢ minus 2” to a, where a, b, and c are
variables.
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In assembly language, this could be written:

LOAD b, %r0
LOAD ¢, %rl
ADD %r0, %rl
SUB &2, %rl
STORE %rl, a

Obviously, the C version is easier to read and understand.

N\

program written in a
high-level language

/oy

Compiler X Compiler Y Compiler Z
machine machine machine
language language language

program for program for program for
computer X ~ computer Y computer Z

Figure 1-2. Different Compilers for Different Machines. The same
program written in a high-level language can be
compiled into different machine language programs to
run on different computers.

Closely related to readability is maintainability. Because they are more
readable, programs written in high-level languages are much easier to
modify and debug.

Despite these advantages, there are prices to pay when using high-level
languages. The most important price that must be paid is reduced effi-
ciency. When a compiler translates programs into machine language, it
may not translate them into the most efficient machine code. Just as it is
possible to use different words to say the same thing, it is also possible to
use different machine instructions to write functionally equivalent pro-
grams. Some combinations of instructions execute faster than others. By
writing directly in the machine language, it is usually possible to select the
fastest version. Writing in a high-level language, the programmer has lit-
tle control over how a compiler translates code. The result, especially
when an unsophisticated compiler is used, can be inefficient code.
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Nevertheless, high-level languages are superior to machine and assembly
languages in most instances. For one thing, sophisticated compilers can
perform tricks to gain efficiency that most assembly language program-
mers would never dream of. The main reason for the superiority of high—
level languages, however, is that most of the cost of software development
lies in maintenance, where readability and portability are crucial.

The issues raised—portability, efficiency, and readability—are central
concepts that we will revisit throughout this book. Many of the assumed
advantages of high-level languages, such as portability and readability,
are only enjoyed by careful programming. Likewise, the disadvantages,
such as reduced efficiency, can be mitigated once the language is well un-
derstood. )

1.2 History of C

The C language was first developed in 1972 by Dennis M. Ritchie at
AT&T Bell Labs as a systems programming language—that is, a language
to write operating systems and system utilities. Operating systems are the
programs that manage the computer’s resources. Well-known examples
of operating systems include MS/DOS for IBM PC-compatible comput-
ers, VMS for VAXes, and UNIX, which runs on a variety of computers.

Ritchie’s intent in designing C was to give programmers a convenient
means of accessing a machine’s instruction set. This meant creating a
language that was high—~level enough to make programs readable and
portable, but simple enough to map easily onto the underlying machine.

C was so flexible, and enabled compilers to produce such efficient ma-
chine code, that in 1973, Ritchie and Ken Thompson rewrote most of the
UNIX operating system in C. Traditionally, operating systems were writ-
ten in assembly language because execution speed was critical and be-
cause only assembly languages gave programmers the full control they
needed to access special memory locations. The coding of UNIX in C
demonstrated C’s value as a systems programming language. It repre-
sented the first time that a high-level language was designed specifically
for systems development.

The main advantages of writing an operating system in a high-level lan-
guage are speed of implementation and maintainability. A fortuitous
side—effect, however, is that the operating system can be moved to other
computers by recompiling it on the target machines. This process is
called porting. UNIX was originally written for a DEC PDP-7 in a lan-
guage called B (C’s predecessor). Later, UNIX was ported to a PDP-11
and recoded in C. Before long, UNIX was ported to other types of com-
puters. "Every port required '@ new C compiler so the fortunes of C and
UNIX were tightly bound. For C, this was both good and bad. On the
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one hand, the language spread more quickly than it might have on its
own. On the other hand, C was, in many people’s minds, strictly a UNIX
systems language. It is only in recent years that C has come to be viewed
as a more general-purpose programming language.

The only formal specification for the C language was a document written
by Ritchie entitled The C Reference Manual. In 1977, Ritchie and Brian
Kernighan expanded this document into a full-length book called The C
Programming Language (often referred to as the K&R standard).
Though a useful reference guide for programmers, it was unsatisfactory
for compiler builders because too many details were omitted. Despite its
shortcomings, it remained for years the only C text and acquired the
status of a de facto standard.

In the early days of C, the language was used primarily on UNIX systems.
Even though there were different versions of UNIX available, the ver-
sions of the C compiler maintained a large degree of uniformity. The
version of C running under UNIX is known as PCC (Portable C Compil-
er). Like the K&R standard, PCC also became a de facto standard.

With-the emergence of personal computers (PCs) and the growing popu-
larity of C, however, the K&R and PCC standards were no longer satis-
factory. Suddenly, C compilers were being written to run on new ma-
chines and under different operating systems. It became difficult or im-
possible to adhere to the original standards. Another problem was that C
was such a small language that compiler developers felt a strong tempta-
tion to add their own favorite constructs. Before long, there were many
variants of C, each differing in little ways.

One of C’s original strengths had been its portability, but over the years it
lost this advantage. Programs written for one compiler could not be guar-
anteed to compile correctly on another computer. Eventually, the
American National Standards Institute (ANSI) formed a subcommittee
to define an official version of the C language.

1.3 ANSI Standard

The American National Standards Institute (ANSI) is the foremost stan-
dards organization in the United States. ANSI is divided into a number
of Committees that have responsibility for approving standards that cover
a particular technical area. The X3 Committee, chartered in 1961, is re-
sponsible for Computer and Information Processing Standards.

In February of 1983, James Brodie of Motorola Corporation applied to
the X3 Committee to draft a C standard. ANSI approved the applica-
tion, and in March the X3J11 Technical Committee of ANSI was
formed. X3J11 is composed of representatives from all the major C
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compiler developers, as well as representatives from several companies
that program their applications in C. In the summer of 1983, the com-
mittee met for the first time, and they have been meeting four times a
year since then. The final version of the C Standard is expected to be
approved by ANSI some time in 1987. Already, however, most of the
major decisions have been made and very few changes are anticipated.

The proposed ANSI Standard for the C language is specified in a docu-
ment entitled Draft Proposed American National Standard for Informa-
tion Systems — Programming Language C. In addition to this specifica-
tion, there is a Rationale Document, which clearly explains the goals of
the X3J11 Committee:

The Committee’s overall goal was to develop a clear, consistent,
and unambiguous Standard for the C programming language which
codifies the common, existing definition of C and which promotes
the portability of user programs across C language environments...

The work of the Committee was in large part a balancing act. The
Committee has tried to improve portability while retaining the defi-
nition of certain features of C as machine-dependent. The Com-
mittee worked to incorporate new ideas but did not wish to disrupt
the basic structure and fabric of the language. The Committee
tried to develop a clear and consistent language while trying not to
break existing programs. All of the goals were important and each
decision was weighed in the light of sometimes contradictory re-
quirements in an attempt to reach a workable compromise.

The future of the ANSI Standard will be determined by C users. If they
demand a Standard C compiler, compiler developers will rush to satisfy
them. The members of the X3J11 Committee—which includes represen-
tatives from IBM, DEC, Microsoft, and AT&T, among others—clearly
expect the ANSI Standard to become the standard. Many of these com-
panies are already developing ANSI compilers. Most C programs will be
acceptable to both the old and new versions of C. Still, C programmers
would be wise to make sure that their code conforms to ANSI specifica-
tions.

To obtain copies of the ANSI Standard and Rationale Document, send
your request to:

American National Standards Institute
1430 Broadway
New York, NY 10018
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1.4 Nature of C

The C programming language has acquired the reputation (not entirely
undeserved) for being a mysterious and messy language that promotes
bad programming habits. Part of the problem is that C gives special
meanings to many punctuation characters, such as asterisks, plus signs,
braces, and angle brackets. Once a programmer has learned the C lan-
guage, these symbols look quite commonplace, but there is no denying
that a typical C program can be intimidating to the uninitiated.

The other, more serious, complaint concerns the relative dearth of rules.
Other programming languages, such as Pascal, have very strict rules to
protect programmers from making accidental blunders. It is assumed in
Pascal, for instance, that if a programmer attempts to assign a floating-
point number (same as a real number) to a variable that is supposed to
hold an integer, it is a mistake, and the compiler issues an error message.
In C, the compiler quietly converts the floating—point value to an integer.

The C language was designed for experienced programmers. The compil-
er, therefore, assumes little about what the programmer does or does not
intend to do. This can be summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual
code. In many instances, this freedom allows programmers to write use-
ful programs that would be difficult to write in other languages. However,
the freedom can be, and is, abused by inexperienced programmers who
delight in writing needlessly tricky code. C is a powerful language, but it
requires self-restraint and discipline.

One of our main points made repeatedly throughout this book is that
there is a huge difference between good programs and working programs.
A good program not only works, but is easy to read and maintain. De-
spite what some people claim, it is very possible to write good programs in
C. Unfortunately, many C programmers are content to write programs
that merely work.
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C Essentials

“A little learning is a dangerous thing.” —

Alexander Pope, An _Essay on Criticism

One of the hardest parts about learning a programming language is that
everything is interrelated. It often seems impossible to understand any-
thing before you know everything. In this chapter, we describe the C es-
sentials — what you need to know to write your first programs. To avoid
getting bogged down in details, we gloss over some of the intricacies of
the C language in this chapter. In later chapters, we provide a more thor-
ough discussion of the topics introduced in this chapter.

2.1 Program Development

Program development consists of a number of steps, as shown in Figure
2-1. Some of the latter steps vary from one computing environment to
another. In this chapter, we describe these latter development stages in
general terms. (Box 2-1 describes how to develop a program in a UNIX
environment:).~You-should.read.the system documentation for your com-
puter to find out how to compile and link programs in your particular en-
vironment.
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Define the problem

2

Design an algorithm to
solve the problem

v

Edit source files

2

Compile source files

v

Link Object files

2

Test and debug executable
i program

Redefine
problem

Figure 2-1. Stages of Program Development.

The first step to developing a program is to clearly define the problem
and design an algorithm to solve it. An algorithm is a well-defined set of
rules to solve a particular problem in a finite number of steps. The art of
programming consists of designing or choosing algorithms and expressing
them in a programming language. This stage of the development process
is extremely important, though it is often given short shrift by beginners
and experts alike. We’ll have more to say about the design stage in later
sections of the book. For now, we are concerned with the later stages of
software development that occur after you have defined the problem and
designed an algorithm.

As shown in Figure 2-2, there are three general steps:

1. Edit each source file.
2. Compile each source file to produce an object file.
3. Link the object files together to produce an executable program.

Note that the source and object code can be spread out in multiple files,
but the executable code for a program generally resides in a single file.
Box 2-1 briefly describes how these steps appear in a UNIX environ-
ment.
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source source source source §
file file § file file

compile compile compile compile

object §
file

Runtime
Library

Executable
Code

Figure 2-2. Compiling and Linking. Source files must be compiled
to produce object files. The separate object files are
then linked together to form the executable file.

2.1.1 Compiling Source Files

By the end of the design stage, you should have defined a set of routines,
called functions, each of which solves a small piece of the larger program-
ming problem. The next step is to actually write the code for each func-
tion. This is usually done by creating and editing C language text files.
These files are called source files.

oLl Z'yl_ilsl
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Box 2-1: Compiling and Linking in a UNIX
Environment

In UNIX environments, you edit the source flles with a text editor,
such as ed or vi. To compile the program, you invoke the compiler
with the cc command, followed by the name of the source file.
For example:

% cc test.c

The dollar sign is a command prompt that signifies that the operat-
ing system is waiting for user input. Different operating systems
use different characters for the command prompt. Throughout
this book, we shade characters emitted by the computer to differ-
entiate them from characters that you enter from the keyboard.

UNIX requires the names of C source files to end with a .c exten-
sion. If your source file contains errors, the compiler prints out
the error messages, but does not create an object file. If the pro-
gram is error-free, the compiler produces an object file with the
same name as the source file except that it has a .0 extension in-
stead of a .c extension. Under UNIX, the cc command also in-
vokes the linker and produces an executable file called a.out by
default. You can override this default filename by using the -o op-
tion. For example,

@ cc -0 test test.c

forces the executable file to be named test. If the cc command
contains only one source filename, then the object file is deleted.
However, you can specify multiple source files in the same compi-
lation command. The UNIX cc program compiles each one of
them separately, creating an object file for each, and then it links
all the object files together to create an executable file. For in-
stance, the command

ﬁ cc -0 test modulel.c module2.c module3.c

produces four files—three object files called modulel.o, mod-
ule2.0, and module3.o, and an executable file called test. To run
the program, you enter the executable filename at the command
prompt:

i® test

The loading stage is handled automatically when you execute a
program,

Chapter 2
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The task of the compiler is to translate source code into machine code.
How the compiler does this is beyond the scope of this book. Suffice it to
say that the compiler is itself a program (or group of programs) that must
be executed. The compiler’s input is source code and its output is object
code. Object code represents an intermediary step between the source
code and the final executable code. The final steps are handled by two
additional utilities called the linker (or binder) and the loader.

2.1.2 Linking Object Files

After creating object files by invoking the compiler, you would combine
them into a single file by invoking the linker. In addition to combining
object files, the linker also links in functions from the runtime library if
necessary. The result of the linking stage is an executable program.

Although linking is handled automatically by some operating systems
(e.g., UNIX), the linker is actually a separate program. In some environ-
ments it must be invoked separately.

2.1.3 Loading Executable Files

There is one additional step that is often ignored because it is usually
handled automatically by the operating system. This is the loading stage,
in which the executable program is loaded into the computer’s memory.

Most operating systems automatically load a program when you type the
name of its executable file. A few operating systems, however, require
you to explicitly run a loader program to get your program into memory.

2.1.4 The Runtime Library

One of the reasons C is such a small language is that it defers many op-
erations to a large runtime library. The runtime library is a collection of
object files. Each file contains the machine instructions for a function
that performs one of a wide variety of services. The functions are divided
into groups, such as I/O (Input and Output), memory management,
mathematical operations, and string manipulation. For each group there
is a source file, called a header file, that contains information you need
to use these functions. By convention, the names for header files end
with a .h extension. For example, the standard group of I/O functions
has an associated header file called stdio.h.

To include a header file in a program, you must insert the following state-
ment_in_your source file:

#include <filename>
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For example, one of the I/O runtime routines, called printf(), enables
you to display data on your terminal. To use this function, you must en-
ter the following line in your source file:

#include <stdio.h>

Usually, this would be one of the first lines in your source file. We de-
scribe the #include directive and other preprocessor commands in more
detail later in this chapter.

2.2 Functions

The most important concept underlying high-level languages is the notion
of functions. In other languages, they may be called subroutines or pro-
cedures, but the idea is the same. A C function is a collection of C lan-
guage operations. A function usually performs an operation that is more
complex than any of the operations built into the C language. At the
same time, a function should not be so complex that it is difficult to un-
derstand.

Typically, programs are developed with layers of functions. The lower—
level functions perform the simplest operations, and higher-level func-
tions are created by combining lower-level functions. The following, for
instance, is a low-level function that calculates the square of a number.
This is a simple function, yet it performs an operation that is not built into
the C language.

int square( num )
int num;

{

int answer;

answer = num * num;
return answer;

}

As shown in Figure 2-3, software engineering rests on the concept of hi-
erarchies, building complex structures from simple components.
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@)
Machine Instructions: At the lowest level, O O %
every program consists of primitive % O ) @)
machine instructions. O O

Language Statements: High-level languages
consist of statements that perform one or
more machine instructions.

Functions: Functions consist of
groups of language statements.

Programs: Programs
consist of groups
of functions.

Figure 2-3. Software Hierarchy. Software engineering is based on a
hierarchy of programming components.
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You can think of function names as abbreviations for long, possibly com-
plicated sets of commands. You need only define a function once, but
you can invoke (or call) it any number of times. This means that any set
of operations that occurs more than once is a candidate for becoming a
function. Functions are more than just a shorthand, however. They
enable you to abstract information. This means that a complex
operation can be constructed out of simpler operations. This yields two
benefits:

1) Ease of change and enhanced reliability. If you need to change
program behavior, either to fix a problem or to adapt to new re-
quirements, the change need only be made in one place because
there is only one copy of each function. Remember, needless re-
dundancy is the hobgoblin of software engineers!

2) Better readability. With the low-level details of an algorithm hid-
den away in functions, the algorithm is easier to read. In fact,
even if a set of operations is used only once in a program, it is
sometimes worthwhile to make it a function if it aids readability.

A function is like a specialized machine that accepts data as input, proc-
esses it in a defined manner, and hands back the results. For example,
the square() function takes a number as input and returns the square of
the number as the result. Whenever we want to know the square of a
number, we “call” the square function.

The key to using functions successfully is to make them perform small
pieces of a larger problem. Ideally, however, each piece should be gen-
eral enough so that it can be used in other programs as well. For exam-
ple, suppose you want to write a program that counts the number of
words in a file. The best way to approach this programming problem is
through a method called top—-down design and stepwise refinement. The
basic idea behind this methodology is to start with a description of the
task in your natural language and then break it into smaller, more precise
tasks. Then, if necessary, divide those smaller tasks into still smaller op-
erations until you arrive at a group of low-level functions (called primi-
tives) that can be employed to solve the original problem.

As an example, let’s start with the task:

Count the number of words in a file
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As the first step in the refinement process, we can divide this step into
the following steps:

open the file;

while there are more words in the file
read a word;
increment the word count;

print the word count;

close the file.

Finally, we can refine the steps even further by expanding read a word:

open the file;

while there are more words in the file
read characters until you get a non-space character;
read characters until you get a space character;
increment the word count;

print the word count;

close the file.

Before you actually write the code for a program, you should write down
the steps as we have. This outline of the program is called pseudo-code
because the steps are written in a shorthand language that is somewhere
between your natural language and the programming language. Once
you’ve written the pseudo—code, it is usually fairly easy to translate it into
a high-level language.

Many of the steps shown in the pseudo-code can be broken down even
further. However, these steps are sufficiently low-level because there are
runtime functions to perform them. For example, there is an fopen()
function that opens a file, a fgetc() function that reads a character from a
file, a printf() function that prints text, and an fclose() function that
closes a file. Of course, you won’t always be so lucky as to have all the
primitives available. Sometimes you’ll need to write your own. However,
the runtime library does contain a powerful set of primitives, so you
should always check it before writing your own function. Appendix A
describes the functions in the runtime library.

One point worth stressing is that functions should be small, yet general.
The fopen() function, for example, is written so that you can pass it any
filename and it will open the corresponding file. In fact, fopen() is even
more general, allowing you to specify whether the file contains text or nu-
meric data, and whether it is to be opened for read or write access. This
is a good illustration of the principle that the best functions perform small
autonomous tasks, but are written so that the tasks can be easily modified
by changing the input.
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As you develop a program, dividing it into functions, you are likely to
learn more about the particular problem you’re trying to solve. Don’t be
discouraged, therefore, if you find it hard to go from the original problem
statement to the C language source code. Like everything, it gets easier
with practice.

2.3 Anatomy of a C Function

Since functions are the building blocks of all C programs, they are a good
place to start describing the C language. The general layout is shown in
Figure 2-4, although some of the elements are optional. The required
parts are the function name, the parentheses following the function
name, and the left and right braces, which denote the beginning and the
end of the function body. The other elements are optional.

function function —-@—— arguments
type name

argument
declarations

declarations

C statements

Figure 2-4. Elements of a Function. The shaded components are
optional.
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The function shown in Figure 2-5 is the square() function that we intro-
duced earlier. The figure identifies all of the function’s components.

We'll describe each line in turn. The first line has three parts. The first
word, int, is a reserved keyword that stands for “integer.” It signifies that
the function is going to return an integer value. There are about thirty
keywords in C, each of which has a language-defined meaning. Key-
words are always written in lowercase letters and are reserved by the C
language, which means that you may not use them as names for variables.
(The complete list of keywords appears in Table 2-2.)

The second word, square, is the name of the function itself. This is what
you use to call the function. We could have named the function any-
thing, but it is best to use names that remind you of what the function ac-
tually does. The parentheses following the name of the function indicate
that square is, in fact, a function and not some other type of variable.
num is the name of the argument.

function type

function name
i v argument name
int square( num )
int num; = argument declaration
int answer ;= variable declaration

answer = num*num;

C statements
return answer:;

}

<—— function body

Figure 2-5. Anatomy of the square() Function.

Arguments represent data that are passed from the calling function to the
function being called. On the calling side, they are known as actual ar-
guments; on the called side, they are referred to as formal arguments.
As with naming functions, we could give the argument any name we
want, but num seems sufficiently descriptive.

Functions can take any number of arguments. For example, a function
that computes x to the y power would take two arguments, separated by a
comma (the spaces between the parentheses and the arguments are op-
tional):

int power( x, ¥ )
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The second line of the square() function is an argument declaration.
Again, we use the keyword int, which signifies that the input is going to
be an integer. The semicolon ending the line is a punctuation mark indi-
cating the end of a statement or declaration.

The function body contains all of the executable statements. This is
where calculations are actually performed. The function body must begin
with a left brace and end with a right brace.

The line following the left brace is a declaration of the integer variable
called answer. Program variables are names for data objects whose val-
ues can be used or changed. The declaration of answer follows the same
format as the declaration of num, but it lies within the function body.
This indicates that it is not an argument to the function. Rather, it is a
variable that the function is going to use to temporarily hold a value.
Once the function finishes, answer becomes inaccessible. All variables

declared within a function body must be declared immediately after a left
brace.

The next line is the first executable statement—that is, the first statement
that actually performs a computation. It is called an assignment state-
ment because it assigns the value on the right-hand of the equal sign to
the variable on the left-hand side. You would read it as: “Assign the
value of num times num to answer.” The symbol * is an operator that
represents multiplication and “=" is an operator that represents assign-
ment. Assignment is the process of storing the value of the expression on
the right-hand side of the equal sign in the data object represented by the
left-hand side of the equal sign.

The next statement is a return statement, which causes the function to
return to its caller. The return statement may optionally return a value
from the function, in this case answer.

Before proceeding, we need to take a closer look at some of these func-
tion components—particularly variables, variable names, constants, ex-
pressions, and assignment statements.
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2.3.1 Variables and Constants
The statement,
j = 5+10;

seems straightforward enough. It means “add the values 5 and 10 and as-
sign the result to a variable called j.” But there are actually a number of
underlying assumptions that give this statement meaning. It seems intelli-
gible to us only because we are accustomed to dealing with the symbols
involved. We know that “5” and “10” are integer values, that “+” and
“=" are operators, and that j is a variable whose value can be changed.
To the computer, however, all of these symbols are merely different com-
binations of on/off bits. To make sense out of the expression, a com-
puter must be told at some point what each of these symbols means. This
is one of the functions of the compiler. The compiler knows that when it
sees a combination of digits 0 through 9, it is looking at an integer value.
If there is a period within the string of digits (i.e., 3.141), then it is look-
ing at a floating-point number. These are just two out of a multitude of
rules that the compiler uses to make sense out of a program. This stage of
the compiler, where such rules are uses to interpret a source file, is called
the lexical analysis stage.

One of the compiler’s most basic tasks during the lexical analysis stage is
to differentiate between constants and variables. As their names imply, a
constant is a value that never changes, whereas a variable can represent
different values. Consider again the statement:

J = 5+10;

The symbols “5” and “10” are constants because they have the same
value no matter where they appear in a program. The symbol j, on the
other hand, is the name of a variable that may be able to represent differ-
ent values. After this statement, j will have the value 15, but we could
make another assignment that would give it a different value. A variable
achieves its “variableness” by representing a location, or address, in
computer memory.

The variable j is located at some address, say 2486. So the assignment
statement translates into “add the constants 5 and 10, and then store the
result at location 2486” (see Figure 2-6).

The statement,
i=3-2;

says “fetch the contents of address 2486, subtract the constant 2 from it,
and store the result at 2486.” In this case the value of j is first read and
then a new value is written. Box 2-2 describes a useful analogy for think-
ing about computer memory.
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Memory

Variable Address Contents

<+— 4 bytes —»

2482

] 2486 15

2490

Figure 2-6. Memory after j = 5 + 10. (We assume that j
requires four bytes of storage, as shown by the
addresses.)

2.3.2 Names

In the C language, you can name just about anything: variables, con-
stants, functions, and even locations in a program. The rules for compos-
ing names are the same regardless of what you are naming. Names may
contain letters, numbers, and the underscore character _, but must start
with a letter or underscore. Names beginning with an underscore, how-
ever, are generally reserved for internal system variables.

The C language is case sensitive which means that it differentiates be-
tween lowercase and uppercase letters. So the names,

VaR
var
VAR

are all different. The advantage of case sensitivity is that you have more
names to choose from, but it also means that you should follow strict
naming conventions to ensure readability and maintainability.

A name cannot be the same as one of the reserved keywords (see Table
2-2). Also, you should avoid using names that are used by the runtime
library unless you really want to create your own version of the runtime
function. See Appendix C for a complete list of reserved names. Table
2-1 shows some legal and illegal names.
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Legal Names
]
Js
__system_name

sesquipedalial_name
UpPeR_aNd_LoWeR_cASE_nAmE

Illegal Names

5] Names may not begin with a digit.
$name Names may not contain a dollar sign.
int int is a reserved keyword.
bad%#*@name Names may not contain any special

character except an underscore.

Table 2-1. Legal and lllegal Variable Names

There is no C-defined limit to the length of a name, although each com-
piler sets its own limit. The ANSI Standard requires compilers to support
names of at least 31 characters. Some older compilers impose an
8-character limit.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 2-2. Reserved C Keywords. You may not use these as
variable names.

There is some strategy involved in choosing names that make your pro-
gram easier to understand. When, for instance, do you use uppercase,
when do you use lowercase,.and when do you use the underscore charac-
ters? Also, when is a single-letter name like i/ or m suitable and when
should a name be [longer and more meaningful? These are questions that



24 Chapter 2

we'll address as we proceed. As a general rule, you should use lowercase
letters for variable names. Another important and obvious rule—but one
that is often overlooked—is to choose names that reflect their use. For
instance, a variable that is used to store the fractional part of a floating—
point value could be called fractional_part.

Box 2-2: The Mailbox Analogy

A good way to think about memory is as a series of mailboxes.
Each box has a unique address. A thousand boxes would have ad-
dresses from 0 through 999 (in C, as in most computers, address-
ing begins at zero instead of one). Inside each box is a slip of pa-
per with a number on it. To store the value 5 in box 200, you
would open the box, erase whatever number is on the slip of pa-
per, and write a 5 on it. To see what is in box 350, you would
open the box and read the value on the slip of paper, and then re-
turn the slip unchanged. The only restrictions on the mailboxes
are that each one can hold only one slip of paper, or value, at a
time.

It is a small conceptual jump from the mailbox example to com-
puter memory. The processes are identical with one small addition
in the computer model. In a computer, it sometimes takes more
than one mailbox to store a value. A large integer, for example,
might require four bytes, or mailboxes. In this case, the compiler
would store the value by opening four consecutive mailboxes and
writing a portion of the number in each. To read the value, it
would again need to open all four mailboxes.

A computer language lets you give a mailbox a name so that you
need not remember its numeric address. Whenever you declare a
variable, the compiler finds an unused mailbox and binds the ad-
dress of the unused box to the variable name. Then when you use
the variable name in an expression, the compiler knows what box
to open.
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2.3.3 Expressions

An expression is any combination of objects that denotes the computa-
tion of a value. For example, all of the following are expressions:

S A constant

num A variable

5 + num A constant plus a variable

5 + num *6 A constant plus a variable times a
constant

fQ) A function call

f(O)/4 A function call, whose result is

divided by a constant

The building blocks of expressions include variables, constants, and func-
tion calls. There are additional building blocks, but these are enough to
get started. The building blocks by themselves are expressions, but they
can also be combined by operators to form more complex expressions.
There are literally dozens of operators, but the following are some of the
most basic ones:

+ Addition

- Subtraction

* Multiplication
/ Division

Chapter 5 describes operators and expressions in detail.

2.3.4 Assignment Statements
The square() function contains one example of an assignment statement:
answer = num * num;

The general format of an assignment statement is shown in Figure 2-7.
The expression on the right-hand side of the assignment operator, some-
times called an rvalue, is a value. The left-hand side of an assignment
statement, called an lvalue, is a place that can hold a value. Lvalues
must represent memory locations where data can be stored. Originally,
the term “lvalue” was coined to define the expression on the left-hand
side of an assignment expression. However, this is something of a misno-
mer because not every lvalue may be used on the left-hand side of an as-
signment expression—some lvalues refer to constants whose values cannot
be changed. Still, the distinction between lvalues and rvalues is a useful
one. For example, it wouldn’t make any sense to turn the previous as-
signment statement around,

num * num = answer,
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because the expression num * num is not an lvalue—it does not represent
a memory location.

Ivalue —b@—— rvalue —O

Figure 2-7. Syntax of an Assignment Statement.

2.4 Formatting Source Files

One aspect of C programming that can be confusing to beginners is that
newlines in the source code are treated exactly like spaces (except when
they appear in a character constant or string literal). Newlines are special
characters that cause the cursor to jump to the beginning of the next line.
Whenever you press the RETURN key on your keyboard, a newline is
generated. Because C ignores newlines, we could have written the
square() function as:

int square( num ) int num; { int answer;
answer = num*num; return answer; }

While this is equally readable to the computer, it is less readable to hu-
mans, and is therefore considered poor programming style. The compiler
doesn’t care how many spaces or newlines you insert between program
components. For example, the following is also legal:

int

square( num )

int num

{ int

answer ;
answer = num

* num;
return answer; }

Again, this is an example of poor programming style. Note, in addition,
that you cannot insert spaces within names or keywords.

Like other programming languages, the C language requires a conscious
effort on the programmer’s part to use consistent and readable conven-
tions. Our own style, exhibited in the examples throughout the book,
represents our personal preference, but is by no means the only good way
to write programs. The main points to keep in mind are readability and
consistency.
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2.4.1 Comments

A comment is text that you include in a source file to explain what the
code is doing. Comments are for human readers—the compiler ignores
them. Commenting programs is an important, though often-neglected,
aspect of software engineering. The C language allows you to enter com-
ments by inserting text between the symbols /* and */. In the following
example, the asterisks that begin each line are included to aid readabil-
ity—only the first and last ones are required.

/¥ square()

Author: P. Margolis

Initial coding: 3/87

Purpose:

This function returns the square of its
argument .

/

% X X X X *

int square( num )
int num;

{

int answer;

answer = num*num; /*Does not check for overflow */
return answer;

}

The compiler ignores whatever characters appear within the comment de-
limiters. Note that a comment can span multiple lines. Formatting com-
ments so they are readable but do not interrupt the flow of the program is
difficult in all languages, including C. One method is to devote entire
lines to comments. Another is to put comments to the right of the code.
You should use this second method only if the comment can fit on a sin-
gle line. We use both formats in examples throughout the book. Nested
comments are not allowed in C, as described in Box 2-3.

A more important issue is what to comment. In general, you should
comment anything that is not obvious. This includes complex expres-
sions, data structures, and the purpose of functions. In fact, all functions
should contain a header comment that describes what the function does.
It is also useful to comment changes to programs so that you can keep
track of modifications., This is particularly important if you are working
on a small piece of a larger project. However, comments without infor-
mation content can make a program difficult to read. Do not comment
the obvious. The following, for example, is poor commenting style:

J=J +1; /* increment j */



28 Chapter 2

Also, lengthy comments cannot compensate for unreadable code. Com-
menting is largely a stylistic issue for which it is difficult to impose hard-
and-fast rules. The best way to learn is by studying the examples in this
book and other code written by experienced programmers.

Box 2-3: Bug Alert — No Nested Comments

You cannot place comments within comments to form nested com-
ments. For example,

/* This is an outer comment

* /* This is an attempted inner comment */
*

* This will be interpreted as code.

i

C identifies the beginning of a comment by the character sequence
/*. It then strips all characters up to, and including, the end com-
ment sequence */. What's left gets passed to the compiler to be
further processed. In the example above, therefore, the compiler
will delete everything up to the first */ sequence, but pass the rest
to the compiler. So the compiler will attempt to process:

%
* This will be interpreted as code:
i

Not recognizing these lines as valid C statements, the compiler will
issue an error message.

2.5 The main() Function

Having written and compiled the function square(), we still can’t quite
execute it. Every executable program must contain a special function
called main(), which is where program execution begins. The main()
function can call other functions. For example, to invoke square(), you
could write:

main()

{
extern int square();
int solution;

solution = square( § );
exit( 0 );
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This assigns the square of 5 to the variable named solution. The rules
governing a main() function are the same as the rules for other functions.
Note, however, that we don’t identify the function’s data type and we
don’t declare any arguments. This is a convention that we adopt for
now. main() actually does return a value and it takes two arguments.
We defer a discussion of these aspects until Chapter 9.

The exit() function is a runtime library routine that causes a program to
end, returning control to the operating system. If the argument to exit()
is zero, it means that the program is ending normally without errors.
Non-zero arguments indicate abnormal termination of the program.
Calling exit() from a main() function is exactly the same as executing a
return statement. That is,

exit( 0 );
is the same as:
return O;

You should include either exit() or return in every main() function.
(For ANSI-conforming compilers, you need to include the stdlib.h
header file wherever you call the exit() function.)

We declare two names in main(). The first is the function square(),
which we are going to call. The special keyword extern indicates that
square() is defined elsewhere, possibly in another source file. The other
variable, solution, is an integer that we use to store the value returned by
square().

The next statement is the one that actually invokes the square() function.
Note that it is an assignment statement, with the right~hand side of the
statement being the function invocation. The argument 5 is placed in pa-
rentheses to indicate that it is the value being passed as an actual argu-
ment to square(). You will recall that square()’s name for this passed ar-
gument is num. The square() function then computes the square of num
and returns it. The return value gets assigned to solution in the main()
function.

We now have a working program, but it is not particularly useful for a
couple of reasons. One problem with this program is that there is no way
to see the answer. In this simple case, it’s obvious that the variable solu-
tion gets the value 25, but suppose we pass square() a larger value whose
square we don’t already know. We need to add a statement that prints
out the value of solution so we can see it. There are a number of runtime
routines that can display data on your terminal, but the most versatile is
printf(). Adding printf() to our program gives us the program shown on
the next page.
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#include <stdio.h> /* Header file of printf() */

main()

{
extern int square();
int solution;

solution = square( 27 );
printf( "The square of 27 is %d\n", solution );
exit( 0 );

}

Note that we need to include the header file stdio.h because printf() is an
I/0 function. We describe the printf() function in more detail later in this
chapter. For now, all you need to know is that %d is a special code that
indicates to the printf() function that the argument to be printed is a
decimal integer. The actual output will be the value stored in solution.
The \n sequence is a special sequence that forces printf() to output a
newline character, causing the cursor to move to the beginning of the
next line.

Assuming main() is stored in a source file called getsquare.c, and
square() is located in a file called square.c, you could compile and link
this program with the following command (in a UNIX environment):

$ cc -o getsquare getsquare.c square.c
To run the program, type getsquare at the prompt:

'3 getsquare
The square of 27 is 729
3

The getsquare program still isn’t very useful, however, since it can only
print the square of one number. To find out the squares of other num-
bers, we would have to edit the source file, change the argument to
square(), and then re—compile, re-link, and re—-execute the program. It
would be better if we could dynamically specify which number we want to
square while getsquare is running. To do this, we need to use another
runtime routine called scanf(). scanf() is the mirror function to printf().
Whereas printf() outputs the value of a variable, scanf() reads data en-
tered from the keyboard and assigns them to variables.
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Adding scanf() to our program, we get:

#include <stdio.h>

main()

{
extern int square();
int solution;
int input_val;

printf( "Enter an integer value: " );
scanf( "%d", &input_val );
solution = square( input_val );
printf( "The square of %d is %d\n", input_val,
solution );
exit( 0 );
}

Note that we declare another variable, input_val, to store the value en-
tered from the keyboard. We then pass this value as the argument to
square(). The expression,

&input_val

means “the address of input_val”. We pass the address of input_val so
that scanf() can store a value in it. The & symbol is an important C op-
erator that we discuss in more detail in Chapter 3. A typical execution of
getsquare would be:

$ getsquare

Enter an integer value: 8
The square of 8 is 64

e

We can execute this program any number of times, giving it different in-
put with each execution.

2.6 The printf() Function

The printf() function can take any number of arguments. The first argu-
ment, however, is special. It is called the format string and it specifies
how many data arguments are to follow and how they are to be format-
ted. The format string is enclosed in double quotes, and may contain
text and format specifiers. A format specifier is a special character se-
quence that begins with a percent sign (%) and indicates how to write a
single data item.
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For example, in the statement,
printf( "The value of num is %d", num );
there are two arguments. The first is the format string:
"The value of num is %d"

The second is the data item, in this case a variable called num. The for-
mat string can be broken down further into two parts: a text string,

The value of num is
and a format specifier,

%d

The %d specifier indicates that the first data item, num, is a decimal inte-
ger. There are other specifiers for other types of data. Following is a
partial list:

%oc Character data item

%f Floating~point data item

Yos Null-terminated character array (string)
%0 Octal integer

Yox Hexadecimal integer

We describe these specifiers and others in later chapters. In addition to
specifying the type of data to be printed, you can also specify such attrib-
utes as left justification, right justification, padding characters, and
whether a plus sign should be printed for positive numbers. These details
are described in Appendix A.

For now, the only additional thing you need to know about printf() is
that the format string can contain any number of format specifiers, but
there must be a data argument for each one. For example:

‘ v v ‘ l

printf ("Print three values: %d %d %d'", numl, num2, num3);

Note that the first format specifier corresponds to the first data item, the
second specifier to the second data item, and so on. We separate each
specifier by a space so that a space will be printed before each number.
Otherwise the numbers would be printed one after the other without any
separation.
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The data items can be expressions, such as num*num:
printf( "The square of %d is %d\n", num, num*num );

The backslash (\) followed by n forms a special symbol called an escape
sequence. When escape sequences are sent to an output device, such as
a terminal, they are interpreted as signals that control the format of dis-
play. The \n escape sequence forces the system to output a newline.
There are other escape sequences, which we describe in the next chap-
ter.

2.6.1 Continuation Character

To span a quoted string over more than one line, you must use the con-
tinuation character, which is a backslash. For example, here’s a pro-
gram that uses the continuation character to print a long string:

main()
{

printf( "This string is too long to fit on one \
line, so I need to use the continuation \
character." );

}

Prior to the ANSI Standard, the continuation character could only be
used to continue character strings. The Standard extended this notion so
that you can now stretch variable names over multiple lines. For the sake
of readability, however, you should use the continuation character spar-
ingly. (The ANSI Standard supports an alternative notation for extend-
ing strings across multiple lines. This feature is described in Chapter 6.)

2.7 The scanf() Function

The scanf() function is the mirror image of printf(). Instead of printing
data on the terminal, it reads data entered from the keyboard. The for-
mat of scanf() is similar to printf(). Like printf(), scanf() can take any
number of arguments, but the first argument is a format string. scanf()
also uses many of the same format specifiers. The specifier %d, for ex-
ample, indicates that the value to be read is an integer. The major differ-
ence between scanf() and printf() is that the data item arguments must
be lvalues and they must be preceded by the address of operator &. For
example,

scanf( "%d", &num );

directs the system to read integer input from your terminal and store the
value in the variable called num, The ampersand is a special operator
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that finds the address of a variable. We discuss it in more detail in the
next chapter.

The best way to learn how to use printf() and scanf() is to experiment
with them. The exercises at the end of this chapter suggest some pro-
grams you can write. You can also look at the complete descriptions of
printf() and scanf() in Appendix A.

2.8 The Preprocessor

You can think of the C preprocessor as a separate program that runs be-
fore the actual compiler. It is automatically executed when you compile
a program, so you don’t need to explicitly invoke it. The preprocessor
has its own simple grammar and syntax that are only distantly related to
the C language syntax. All preprocessor directives begin with a pound
sign (#), which must be the first non-space character on the line.

Unlike C statements, a preprocessor directive ends with a newline, not a
semicolon.

We discuss the preprocessor in detail in Chapter 10. For now, we need
only take a closer look at the #include facility, already mentioned in con-
nection with header files, and a new preprocessor command called #de-
fine.

2.8.1 The Include Facility

The preprocessor #include directive causes the compiler to read source
text from another file as well as the file it is currently compiling. In ef-
fect, this enables you to insert the contents of one file into another file
before compilation begins, although the orginal file is not actually altered.
This is especially useful when identical information is to be shared by
more than one source file. Rather than duplicating the information in
each file, you can place all the common information in a single file and
then include that file wherever necessary. Not only does this reduce the
amount of typing required, but it also makes program maintenance eas-
ier, since changes to the shared code need only be made in one place.
The #include command has two forms:

#include <filename>
and

#include "filename"
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If the filename is surrounded by angle brackets, the preprocessor looks in
a special place designated by the operating system. This is where all sys-
tem include files, such as the header files for the runtime library, are
kept. If the filename is surrounded by double quotes, the preprocessor
looks in the directory containing the source file. If it can’t find the in-
clude file there, it searches for the file as if it had been enclosed in angle
brackets. By convention, the names of include files usually end with a .4
extension.

Consider what happens when the preprocessor encounters the command:
#include <stdio.h>

The preprocessor searches in the system-defined directory for a file
called stdio.h, and then replaces the #include command with the con-
tents of the file. We won’t show you the entire stdio.h file because it’s
long and complicated and varies from one compiler to another. But a
typical section of the file looks like the following:

/* Definitions of functions compiled separately
¥ that don’t return int’s.
*/

extern FILE *fopen(),*fdopen(),*freopen(), *popen(),
*tmpfile();

extern long ftell();

extern char *gets(), *fgets(), *ctermid(),
*cuserid(), *tempnam(), *tmpnam();

These are declarations of functions in the runtime library. As a simpler
example of how the #include directive works, suppose you have a file
called global_decs.h, which contains the following:

int global_counter;
char global_char;

Then in a source file, you use the #include directive:

#include "global decs.h"
main()

{
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When you compile the program, the preprocessor replaces the #include
directive with the contents of the specified file, so the source file looks
like:

int global_counter;

char global char;
main()

{

2.8.2 The #define Directive

Just as it is possible to associate a name with a memory location by de-
claring a variable, it is also possible to associate a name with a constant.
You do this by using a preprocessor directive called #define. For in-
stance,

#define NOTHING O

binds the name “NOTHING” to the constant zero. The two symbols
“NOTHING” and “0” now mean the same thing to the compiler. The
statements,

=5+ 0;

j = 5 + NOTHING;

are exactly the same.

The rules for naming constants are the same as the rules for naming vari-
ables, but you must be careful not to confuse the two. For example, hav-
ing defined NOTHING as zero, you cannot write:

NOTHING = j+5;
any more than you can write:

0 = j+5;
In both cases, the compiler should issue an error since you are attempting
to change the value of a constant. To avoid confusion between constants

and variables, it is a common practice to use all uppercase letters for con-
stant names and lowercase letters for variable names.

Naming constants has two important benefits. First, it enables you to give
a descriptive name to a nondescript number. For example:

#define MAX_PAGE_WIDTH 80

Now, in your program you can use MAX PAGE WIDTH, which means
something, instead of “80” which doesn’t tell you much. Creative
naming of constants can make a program much easier to read.
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The other advantage of constant names is that they make a program eas-
ier to change. For example, the maximum page width parameter might
appear dozens of times in a large text formatting program. Suppose that
you want to change the maximum width from 80 to 70. If, instead of us-
ing a constant name, you used the constant 80, you will need to change
80 to 70 wherever it appears, and hope that you are changing the right
80’s. If you use a constant name, you need only change the definition,

#define MAX_PAGE_WIDTH 70

and recompile.
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Exercises

1.
2.

Write a main() routine that prints Hello world.

Write a function that returns the cube of its argument. The func-
tion and argument should be declared as ints:

int cube( num )
int num;

Write a function called fourth_pow() that returns the fourth
power of its argument. Use square() in your solution. Then
write a main() function that calls fourth_pow().

Write a main() function that reads an integer from the terminal,
finds its cube by calling cube(), and prints the cube.

Link main() and cube() together and run them.

In what ways does a computer program resemble a living organ-
ism? (See Douglas Hofstadter’s Godel, Escher, Bach for an in-
depth discussion of computer and biological hierarchies.)

Write pseudo—-code for a program that strips comments from a C
source file.

Which of the following names cannot be used to name variables?
Why are they illegal?

var VAR INT

int p.s p_s

p$s p#8 qdqqqqqaaqa
double p7s_2 geg 234 456
double_var struct structure
12f£f ef default

ok not_ok void

VOID Void voId

_12 _bufp

The following function contains a number of bugs. Find the bugs
and fix them.

main( x )
{
scanf( "How many bugs are in this programs?,
prob_count )
printf( This program has %d problems\n,
prob_count );
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Scalar Data Types

What’s in a name? That which we call a rose
By any other name would smell as sweet. —
Shakespeare, Rom n liet

The ability to divide data into different types is one of the most important
features of modern programming languages. It enables you to work with
relatively complex objects instead of the more mundane objects that the
computer manipulates at its lowest level. You can deal with integers,
characters, and floating—point numbers, all of which are familiar entities.
At the bit and byte level, the computer may not understand these con-
cepts. It is up to the compiler, therefore, to make sure that the computer
handles bits and bytes in a way consistent with their data type. A data
type is really just an interpretation applied to a string of bits.

The C language offers a small but useful set of data types. There are
eight different types of integers and two types of floating—point objects
(three with the ANSI Standard). In addition, integer constants can be
written in decimal, octal or hexadecimal notation. These types—integers
and floating-points—are called arithmetic types. Together with pointers
and.enumerated typessthey.are known as scalar types because all of the
values lie along a linear scale. That is, any scalar value is either less than,
equal to, or greater than any other scalar value.
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In addition to scalar types, there are aggregate types, which are built by
combining one or more scalar types. Aggregate types, which include ar-
rays, structures, and unions, are useful for organizing logically-related
variables into physically-adjacent groups. There is also one type—void—
that is neither scalar nor aggregate. Figure 3~1 shows the logical hierar-
chy of C data types.

This chapter describes scalar variables and constants and the void type.
Chapters 6 and 8 describe aggregate types.

Data Types

I I

void Scalar Types Aggregate Types

L L |

Arithmetic Types Pointers enum

Integral Types Floating Types

Figure 3-1. Hierarchy of C Data Types.

3.1 Declarations

Every variable must be declared before it is used. A declaration pro-
vides the compiler with information about how many bytes should be allo-
cated and how those bytes should be interpreted. To declare j as an in-
teger, you would write:

int j;

The word int is a reserved word that specifies a particular data type.
There are nine reserved words for scalar data types, as shown in Table
3-1.
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char
double short signed
int _
enum long unsigned
float

Table 3~1. Scalar Type Keywords.

The first five—char, int, float, double, and enum are basic types. The
others—long, short, signed, and unsigned—are qualifiers that modify a
basic type in some way. You can think of the basic types as nouns and
the qualifiers as adjectives.

As a shorthand, you can declare variables that have the same type in a
single declaration by separating the variable names with commas. You
could declare j and &k with

int j,k;
which is the same as:

int j;
int k;

All the declarations in a block must appear before any executable state-
ments. The order in which they are declared, however, usually makes no
difference. For instance,

int j,k;
float x,y,z;

is functionally the same as:

float x;
int k;

int j;
float z,y;

It is usually a good idea to group declarations of the same type together
for easy reference.

All of our examples so far have used single-character variable names,
which seems to contradict our earlier advice about using meaningful
names. However, single—character names are acceptable in certain cir-
cumstances, particularly in short example programs and test programs.
To make them a bit more meaningful, there is a convention borrowed
from FORTRAN. The names i, j, k,.m, and n are generally used for inte-
ger counters and temporary variables; x, y, and z are used for floating-
point temporary variables, and c¢ | is used for temporary character
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variables. You should never use the single-character names / (el) or
o(oh), since they are easily confused with the digits 1 (one) and 0 (zero).

3.1.1 Declaring the Return Type of a Function

Just as you can declare the data type of a variable, you can also declare
the type of value returned by a function. The following declares foo() to
be a function that returns a value of type float.

float foo( arg )
int arg;

{

}

Unlike other variables, functions have a default return type (int) if you
do not explicitly give them a return type. For example,

foo ()
{

}

declares a function foo() whose return type is int. Many programmers
use this convention although we recommend that you explicitly enter the
int type to make the program more readable. Some programmers also
omit the return type for functions that return no value. This was accept-
able in older compilers that did not support another syntax for declaring
such functions. More modern C compilers, however, support the void
type, which allows you to explicitly declare that a function does not re-
turn a value. See Section 3-12 for more about void.

3.2 Different Types of Integers

Although int is the basic integer data type, it is also the least descriptive.
On all machines, an int is treated as an integer in that it cannot hold frac-
tional values, but it has different sizes on different machines. = Some
compilers allocate four bytes for an int while others allocate only two
bytes. (Still others allocate three bytes or just one byte.) In addition, the
size of a byte is not constant. On most machines, a byte is eight bits, but
there are even exceptions to this rule.

The only requirements that the ANSI Standard makes is that a byte must
be at least eight bits long, and that ints must be at least 16 bits long and
must represent the “natural” size for the computer. By natural, they
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mean the number of bits that the CPU usually handles in a single instruc-
tion. In our examples throughout the book, we assume that a byte is
eight bits, and that an int is four bytes.

If you don’t care how many bytes are allocated, you can use int. If the
size matters, however, you should use one of the size qualifiers, short or
long. On most machines, a short int is two bytes, and a long int is four
bytes. To declare j as a short int and £ as a long int, you would write:

short int j;
long int k;

The compiler would allocate at least two bytes for j and at least four for k.
Note that since the number of bytes is different, the range of values is dif-
ferent, as shown in Table 3-2. If you need to store values less than
~32,768 or greater than 32,767, you should obviously use a long int.

The compiler is smart enough to infer int even if you leave it out. You
could write, for example:

short j;
long k;

In the interest of brevity, most C programmers use this shorthand.

The number of bits used to represent an integer type determines the
range of values that can be stored in that type. Consider, for example, a
16-bit short int. Each bit has a value of 2 to the power of n where n rep-
resents the position of the bit:

215 214 213 212 211 210 29 28 27 6 25 24 23 22 21 20

For instance, the decimal value 9 would be represented by setting bits 0
and 3:

0000000000001001
28 + 20 = 8 +1 =09

To represent negative numbers, most computers use two’'s complement
notation. Intwo’s complement notation, the leftmost bit (called the most
significant bit because it represents the largest value) is a sign bit. If it is
set to one, the number is negative; if it’s zero, the number is positive. To
negate a binary number, you must first complement all the bits (change
zeroes to ones, and ones to zeroes), and then add 1 to it. To get -9, for
instance, you would first complement the bits, giving you:

1111111111110110
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Then you would add one:
1111111111110111

There is a less popular notation called one’s complement, in which you
simply complement the bits to negate a number, without adding one.
While this notation may seem simpler, it has several drawbacks, one of
which is that there are two representations for zero:

000000000O0O0O0O0OOO0ODO
and
1111111111111111

In two’s complement notation, there is only one representation for zero
because after complementing the bits, you add one, which zeroes all the
bits again.

One of the interesting, and valuable, features of two’s complement nota-
tion is that -1 is represented by all bits being set to one. It also follows
that the largest positive number that can be represented occurs when all
but the sign bit are set. This value is 2(n-1)-1 where n is the number of
bits. The largest negative value is -2(n-1).

Table 3-2 shows sizes and ranges of integer types for our machine. (See
Appendix D for the minimum ranges that must be supported by an
ANSI-conforming C compiler.)

Size
Type (in bytes) Value Range
int 4 —231 to 231 -1
short int 2 -215 to 215 -1
long int 4 -231 to 231 -1
unsigned short int 2 0 to 216 -1
unsigned long int 4 0 to 232 -1
signed char 1 2" to 27 -1
unsigned char 1 0to 28 -1

Table 3-2. Size and Range of Integer Types on Our Machine.

3.2.1 Unsigned Integers

There are.a.number. of instances . where a variable will only have to hold
non-negative values. For instance, variables that are used to count
things are often restricted to non-negative numbers. The C language
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allows you to declare that a variable is non-negative only (or unsigned),
thereby doubling its positive range (the most significant bit will no¢ be a
sign bit). A signed short int has a range of ~-32,767 to 32,767, whereas
an unsigned short int has a range of 0 to 65,535.

To declare an integer variable as being non-negative only, use the un-
signed qualifier, as in:

unsigned int k;
unsigned short m;
unsigned long n;

You can also use unsigned by itself, as in,
unsigned p;

which is the same as unsigned int. The K&R standard supports only un-
signed ints — the other types of unsigned integers are ANSI extensions.
In addition, the ANSI Standard supports the signed qualifier, as de-
scribed in Box 3-1.

Box 3-1: ANSI Feature — signed Qualifier

The ANSI Standard recognizes a new keyword called signed,
which specifically makes a variable capable of holding negative as
well as non-negative values. In most cases, variables are signed
by default, so that the signed keyword is superfluous. The one
exception is with the char type which can be either signed or un-
signed by default, depending on the whims of the compiler devel-
opers. Most compilers use signed char as the default. Keep in
mind that the signed keyword is new, and may not be imple-
mented on your compiler.

3.2.2 Characters and Integers

Most programming languages make a distinction between numeric and
character data. The number “5” is a number while the letter “A” is a
character. In reality, though, even characters are stored in the computer
as numbers. Every character has a unique numeric code. There are
various codes, two of the most common being ASCII, which stands for
American Standard Code for Information Interchange, and EBCDIC
(Extended Binary-Coded Decimal Interchange Code), which is what
IBM uses.on.its larger computers. . Appendix G contains a full list of the
ASCII character set. The examples in this section assume an ASCII
code set since it is the most prevalent in C implementations. For most
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codes, all character values lie within the range 0 through 255, which
means that a character can be represented in a single byte. (Certain lan-
guages, such as Kanji, require more than 256 character codes. To repre-
sent text in these languages, you must use shorts rather than chars.)

In C, the distinction between characters and numbers is blurred. There
is a data type called char, but it is really just a 1-byte integer value that
can be used to hold either characters or numbers. For instance, after
making the declaration,

char c¢;
you can make either of the following assignments:

c = "A";
c = 65;

In both cases, the decimal value 65 is loaded into the variable ¢ since 65
is the ASCII code for the letter 'A’. Note that character constants are
enclosed in single quotes. The quotes tell the compiler to get the nu-
meric code value of the character. For instance, in the following exam-
ple, a gets the value 5, whereas b gets the value 53 since that is the ASCII
code for the character “5”.

char a , b;
a=25;
b___/s/;

The following program reads a character from a terminal and then dis-
plays the code value of the character. The %c format in the scanf() call
indicates that the data item to be read is a character. The %d format in
the printf() call tells the function to output the character in its integer
form.

/* Print the numeric code value of a character */
#include <stdio.h>

main()

{

char ch;

printf( "Enter a character:" );

scanf( "%c", &ch );

printf( "Its numeric code value is: %d\n", ch );
exit( 0 );
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Because chars are treated as small integers, you can perform arithmetic
operations on them. In the following lines, j gets the value 131 since 'A’
equals 65 and 'B’ equals 66.

int j;

j = ‘A’ + ‘B’ ;

In the ASCII character set, character codes are ordered alphabetically.
An uppercase A’ , for example, is 65, a 'B’ is 66...”Z’ is 90. Lowercase
letters start at 97 and run through 122. This makes it fairly easy to imple-
ment a function that changes a character from uppercase to lowercase:

char to_lower( ch )
char ch;

{
}

However, if you assume an ASCII character set, and add or subtract 32,
your program will fail when you run it on a machine that uses EBCDIC or
some other character code. To avoid this problem, the C runtime library
contains two functions called toupper() and tolower() that change a char-
acter’s case. These functions, described in Appendix A, are guaranteed
to work the same in all implementations. For maximum portability,
therefore, you should use these functions rather than writing your own.

return ch +32;

3.3 Different Kinds of Integer
Constants

We have already seen a few integer constants, 5, 10, and 2. These are
called decimal constants since they represent decimal numbers. You can
also write octal and hexadecimal constants. An octal constant is written
by preceding the octal value with the digit zero. A hexadecimal constant
is written by preceding the value with a zero and an x or X. Table 3-3
shows some decimal constants and their octal and hexadecimal equiva-
lents.

Note that negative numbers are preceded with a minus sign just as in al-
gebraic notation. (Strictly speaking, negative numbers are really expres-
sions, not constants.) Non-negative numbers may be preceded by an
optional plus sign. (The plus sign is an added feature of the ANSI Stan-
dard which has a non-intuitive meaning. We discuss its impact in Chap-
ter 5.) Note also that you cannot include a comma or a decimal point in
an integer constant.

An octal constant cannot contain the digits 8 and 9 since they are not
part of the octal number set. (This restriction was not present in the
K&R standard.)
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Decimal Octal Hexadecimal
3 003 0x3
8 010 0x8
15 017 OxF
16 020 0x10
21 025 0x15
-87 -0127 -0x57
187 0273 0xBB
255 0377 Oxff

Table 3-3. Integer Constants.

The scanf() and printf() functions have format specifiers for reading and
writing octal and hexadecimal numbers. For octal numbers, the format
specifier is o; for hexadecimal numbers the format specifier is x. The fol-
lowing program reads a hexadecimal number (with or without the 0x pre-
fix) from the terminal and prints its decimal and octal equivalents.

/* Print the decimal and octal equivalents of a
* hexadecimal constant.

*/
#include <stdio.h>
main()
{
int num;
printf( "Enter a hexadecimal constant: " );

scanf ( "%x", &num );
printf( "The decimal equivalent of %x is: %d\n",

num, num );

printf( "The octal equivalent of %x is: %o\n",

exit( 0 )
}

num, num );

The number of bytes allocated for an integer constant varies from ma-
chine to machine, depending on the relative sizes of the integer types. In
general, an integer constant has type int if its value can fit in an int. Oth-

erwise, it has type long int.

Meorte precisely, the ANSI Standard states

that the type of an integer constant is the first in the corresponding list in
which its value can be represented. The list is shown in Table 3-4.
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Form of Constant List of Possible Types
Unsuffixed decimal int, long int, unsigned long int
Unsuffixed octal or int, unsigned int, long int,
hexadecimal unsigned long int

Suffixed by u or U unsigned int, unsigned long int
Suffixed by | or L long int, unsigned long int

Table 3-4. Types of Integral Constants.

If a constant is too large to fit into the longest type in its list, the results
are unpredictable. Many compilers simply truncate the value and then
load it into memory, whereas others produce an error message.

It is also possible to specifically designate that a constant have type long
int by appending an | or L to the constant (we recommend that you use
an uppercase L since it is easy to confuse a lowercase 1 with the digit 1).
For example:

55L
O7777T76L
—0XAAAB321L

Note that octal and hexadecimal constants may also be long.

Box 3-2: ANSI Feature — unsigned Constants

The ANSI Standard allows you to apply the unsigned qualifier to a
constant. This is done by appending a u or U to the constant, as
in:

55u
077743U
Oxfffu

This syntax, though supported by the ANSI Standard, is new, so
older compilers may give you an error if you try to use it.
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3.3.1 Escape Character Sequences

We have already used the \n escape sequence, which represents a
newline. The full list of escape sequences is shown in Table 3-5 (\a and
\v are ANSI extensions, though they are available on many older compil-
ers).

\a (alert) Produces an audible or visible alert signal.
\b (backspace) Moves the cursor back one space.

\f (form feed) Moves the cursor to the next logical page.
\n (newline) Prints a newline.

\r (carriage return) | Prints a carriage return,
\t | (horizontal tab) Prints a horizontal tab.
\v | (vertical tab) Prints a vertical tab.

Table 3-5. C Escape Sequences.

In addition to the escape sequences listed in Table 3-5, C also supports
escape character sequences of the form,

\octal-number
and
\hex-number

which translates into the character represented by the octal or hexadeci-
mal number. For example, if ASCII representations are being used, the
letter ‘a’ may be written as ‘\141’ and ‘Z’ as ‘\132’. This syntax is most
frequently used to represent the null character as ‘\0’. This is exactly
equivalent to the numeric constant zero (0). Note that the octal number
does not include the zero prefix as it would for a normal octal constant.
To specify a hexadecimal number, you should also leave out the zero so
that the prefix is an x (uppercase X is not allowed in this context). Sup-
port for hexadecimal sequences is an ANSI extension. The ANSI Stan-
dard also supports trigraph sequences, as described in Box 3-3.
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Box 3-3: ANSI Feature — Trigraph Sequences

Because certain characters used by the C language are not avail-
able on every computer keyboard, the ANSI Standard adopted a
new format for representing these characters. Trigraph sequences
consist of two question marks followed by a third character. Dur-
ing the translation stage, the compiler converts these sequences
into a single character, as shown in Table 3-6. For example, the
following line of source code,

printf( "Print a newline ??/n" );
becomes:
printf( "Print a newline \n" );

Note that this feature is not available on older compilers and may,
in fact, break existing code that accidentally contains trigraph se-
quences.

Trigraph Resulting
Sequence Character
7= # (pound sign)
2 [ (left bracket)
yedl \ (backslash)
??) 1 (right bracket)
7 " (caret)
< { (eft brace)
7 | (oan)
77> } (right brace)
7”- ~ (tilde)

Table 3-6. ANSI Trigraph Sequences.

oLl Z'yl_ilsl
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3.4 Floating—-Point Types

Integers are fine for many occasions but they are inadequate for repre-
senting very large numbers and fractions. For this, you need floating-
point types. There are two ways to write floating—point constants, the
simplest being to place a decimal point in the number. For example,

0.356

5.0

0.000001
7

7.

are all legal examples of floating-point constants. To declare a variable
capable of holding one of these values, you use the float or double key-
words. For example,

float pi;
double pi_squared;

pi = 3.141;
pi_squared = pi * pi;

The word double stands for double-precision, because on many ma-
chines it is capable of representing about twice as much precision as a
float. The precision refers to the number of decimal places that can be
represented. On many machines, a double also takes up twice as much
memory. A float generally requires four bytes, and a double generally
requires eight bytes, although these sizes are not strict requirements. The-
internal representation of floating-point values is incorporated into the
hardware architecture of each computer and is one of the least-standard-
ized aspects of computers. You should read the documentation for your
particular compiler to discover the range and precision of floats and dou-
bles (these limits are also listed in the <limits.h> header file that comes
with the ANSI runtime library).

The following function takes a double value as an argument that repre-
sents a temperature in Fahrenheit and converts it to Celsius.
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/* Convert a float value from Fahrenheit to Celsius
*/

double fahrenheit_to_celsius( temp_fahrenheit )
double temp_fahrenheit;

{

double temp_celsius;

temp_celsius = (temp_ fahrenheit - 32.0) *
100.0/(212.0 - 32.0);
return temp_celsius;

}

The following function computes the area of a circle, given a radius.

/* Given the radius, find the area of a circle.

*/
#define PI 3.14159

float area_of circle( radius )
float radius;

{

float area;

area = PI*radius*radius;
return area;

}

Note that we use the #define feature to create a constant called PI. This
is better than embedding the numeric constant in the code since the
name P! is more meaningful than the string of digits 3.14159.

Box 3-4: ANSI Feature — /ong double Type

The ANSI Standard supports an additional floating-point type
called long double. This is a new type so it may not be imple-
mented by many compilers. long doubles are intended to provide
even greater range and precision than doubles. On many ma-
chines, however, long double and double are synonymous.

The long double declaration was added by the ANSI Committee
because some architectures support more than two floating types.
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3.4.1 Scientific Notation

Scientific notation is a useful shorthand for writing lengthy floating—point
values. In scientific notation, a value consists of two parts: a number
called the mantissa followed by a power of 10 called the characteristic
(or exponent). The letter e or E, standing for exponent, is used to sepa-
rate the two parts. The floating—point constant 3e2, for instance, is in-
terpreted as 3*102, or 300. Likewise, the value -2.5e-4 is interpreted as
-2.5*1074, or -0.00025. The examples in Table 3-7 show some legal
and illegal floating—point constants.

Legal lllegal
3.141 35| No decimal point or exponent
.3333333333 3,500.45 | Commas are illegal
0.3 4E | The exponent sign must be followed
3e2 by a number
SE-5 4e3.6 | The exponent value must be an
3.7e12 integer

Table 3-7. Legal and lllegal Floating—Point Constants.

Box 3-5: ANSI Feature — float and /ong double
constants

By default, all floating-point constants have type double. The
ANSI Standard, however, allows you to override this rule by ap-
pending an f or F to the constant to make it float, or an |l or L to
make it long double. For example:

3.9 /* A double constant */
35T /* A float constant */
3.5e3L /* A long double x/

These suffixes are useful for forcing floating-point expressions to
be computed with either single or double precision, as explained in
Section 3.9.3.
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3.5 Initialization

A declaration allocates memory for a variable, but it does not necessarily
store an initial value at the location (fixed duration variables, discussed in
Chapter 7, are an exception). If you read the value of such a variable
before making an explicit assignment, therefore, the results are unpre-
dictable. For example, try the following program:

#include <stdio.h>

main()

{

int x;

printf( "The value of x is: %d\n", x );
exit( 0 );
}

The output when you execute this program could be just about anything
since x gets the value of whatever is left over in memory from the previ-
ous program execution. Because you often want a variable to start with a
particular value, the C language provides a special syntax for initializing a
variable. Essentially, you just include an assignment expression after the
variable name in a declaration. For example,

char ch = “A”;

allocates one byte for ch, and also assigns the character A’ to it. The in-
itialization is really just a shorthand for combining a declaration state-
ment and an assignment statement. The previous initialization, for in-
stance, is exactly the same as:

char ch;
ch = "A”;
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3.6 Finding the Address of an Object

As we described earlier, every variable has a unique address that identi-
fies its storage location in memory. For some applications, it is useful to
access the variable through its address rather than through its name. To
obtain the address of a variable, you use the ampersand (&) operator.
Suppose, for instance, that j is a long int whose address is 2486. The
statement,

ptr = &j;

stores the address value 2486 in the variable ptr. When reading an ex-
pression, the ampersand operator is translated as “address of,” so you
would read this statement as: “Assign the address of j to ptr.” The fol-
lowing program prints the value of the variable called j and the address of

j:

#include <stdio.h>

main()

{

int j=1;

printf( "The value of j is: %d\n", Jj );
printf( "The address of J is: %p\n", &j );
exit( 0 );

}

The result is:

The value of j is: 1
The address of j is: 3634264

The address represents the actual location of j in memory. The particu-
lar address listed above is arbitrary. It happens to be j’s address on our
computer for a particular execution. On another computer, the value
could be different. Note that printf() requires a special format specifier
(%p) to print address values. The %p specifier is a relatively new ANSI
addition to the C language that may not be supported on older compilers.
Many compilers allow you to print an address with the %d, %o, and %x
specifiers, but this is not portable since addresses are not guaranteed to
be represented in the same fashion as integers.

Note that you cannot use the ampersand operator on the left-hand side
of an assignment expression. For instance, the following is illegal since
you _cannot change the address of an object:

&x = 1000; /* ILLEGAL */
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3.7 Introduction to Pointers

In the previous example,
ptr = &j;

the variable ptr that holds the address of j in our first example cannot be
a normal integer variable. To store addresses, you need a special type of
variable called a pointer variable (by storing an address, it points to an
object). To declare a pointer variable, you precede the variable name
with an asterisk. The following declaration, for example, makes ptr a
variable that can hold addresses of long int variables.

long *ptr;

The data type, long in this case, refers to the type of variable that pir can
point to. For instance, the following is legal:

long *ptr;
long long_var;
ptr = &long_var; /* Assign the address of
* long var to ptr.
*/
But this is illegal:

long *ptr;
float float_var;
ptr = &float_var; /* ILLEGAL - because ptr can only
* store the address of a long int.
*/
The following program illustrates the difference between a pointer vari-
able and an integer variable:

#include <stdio.h>

main()

{
int j=1;
int *pj;

PJ = &j; /* Assign the address of j to pj */
printf( "The value of j is: %d\n", Jj );
printf( "The address of j is: %p\n", pj );
exit( 0 );

}

The result is:

The value of j is: 1
The address of j is: 3634264
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3.7.1 Dereferencing a Pointer

The asterisk, in addition to being used in pointer declarations, is also
used to dereference a pointer (i.e., get the value stored at the pointer ad-
dress). If you have not come across the concept before, the notion of
dereferencing can be difficult to grasp at first. The following program
and Figure 3-2 show how dereferencing works.

#include <stdio.h>

main()
{
char *p_ch;
char chl = “A”, ch2;

printf( "The address of p_ch is %p\n", &p_ch );

p_ch = &chil;
printf( "The value stored at p_ch is %p\n", p_ch );

printf( "The dereferenced value of p_ch is %c\n",
*p_ch );
ch2 = *p_ch;

exit( 0 );
}

The output from running this program is:

The address of p_ch is 1004
The value stored at p_ch is 2001
The dereferenced value of p_ch is A

This is a roundabout and somewhat contrived example that assigns the
character A’ to both chl and ch2. It does, however, illustrate the effect
of the dereference (*) operator. Figure 3-2 shows the memory contents
at each stage of the program execution. On our machine, the declara-
tions allocate four bytes for p_ch (pointer variables must be large enough
to hold the highest possible address in the machine so they are often the
same size as long ints), and one byte each for chl and ch2. chl is in-
itialized to 'A’. The first print() call displays the address of the pointer
variable p_ch. In the next step, p_ch is assigned the address of chl,
which is also displayed. Finally, we display the dereferenced value of
p_ch and assign it to ch2.



Scalar Data Types

59

Memory
Code Variable Address Contents
= 4 bytes»
1000
p_ch 1004
char *p_ch; :
char ch1 = 'A’, ch2; <1 byte>
2000
ch1 2001 A’
ch2 2002
p_ch = &ch1; 1000
p_ch 1004 2001
2000
ch1 2001 A’
ch2 2002
1000
p_ch 1004 2001
ch2 = *p_ch;
2000
chi 2001 ‘A’
ch2 2002 ‘A’

Figure 3-2. Dereferencing a Pointer Variable.
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These last steps are the important ones. The expression *p_ch is inter-
preted as: “take the address value stored in p_ch and get the value stored
at that address.” This gives us a new way to look at the declaration. The
data type in the pointer declaration indicates what type of value results
when the pointer is dereferenced. For instance, the declaration,

float *fp;

means that when *fp appears as an expression, the result will be a float
value.

The expression *fp can also appear on the left side of an expression:
*fp = 3.15;

In this case, we are storing a value (3.15) at the location designated by
the pointer fp. Note that this is different from

fp = 3.15;

which attempts to store the address 3.15 in fp. This, by the way, is illegal
since addresses are not the same as integers or floating-point values.

3.7.2 Initializing Pointers

You can initialize a pointer just as you would any other type of variable.
However, the initialization value must be an address. For example, you
could write:

int j;

int *ptr_to_Jj = &j;

However, you cannot reference a variable before it is declared, so the
following declarations would be illegal:

int *ptr_to_3j = &j;
int j;

3.7.3 Using Pointers

Pointer variables are used frequently with aggregate types, such as arrays
and structures. We have described them in this chapter because they are
an important scalar data type with which you should become familiar. In
later chapters, we describe the full flexibility and power of C pointers.
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3.8 Typedefs

The C language allows you to create your own names for data types with
the typedef keyword. Syntactically, a typedef is exactly like a variable
declaration except that the declaration is preceded by the typedef key-
word. Semantically, the variable name becomes a synonym for the data
type rather than a variable that has memory allocated for it. For exam-
ple, the statement,

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTE_INT synonymous with long int. The fol-
lowing two declarations are now identical:

long int j;
FOUR_BYTE INT j;

By convention, typedef names are capitalized so that they are not con-
fused with variable names.

There are a number of uses for typedefs. They are especially useful for
abstracting global types that can be used throughout a program. This ap-
plication of typedefs is described in Chapter 8.

Another use of typedefs is to compensate for differences in C compilers.
For example, some non-ANSI C compilers do not support the unsigned
short type. Using typedefs, you can write the program so that it uses un-
signed short if it’s available, or unsigned int when the compiler does not
support unsigned short. For ANSI-conforming compilers, you would
write:

typedef unsigned short USHORT;
For compilers that do not support unsigned short, you would write:
typedef unsigned int USHORT;

Then you would use the typedef name USHORT whenever you want to
declare an unsigned short variable. To compile the program on a differ-
ent machine, all you need to do is find out whether it supports unsigned
short, and write the typedef accordingly.

Note that the typedef definition must appear before it is used in a decla-
ration.
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Box 3-6: Bug Alert — Confusing typedef with
#define

At first glance, it may seem that the typedef keyword duplicates
functionality provided by the #define directive. After all, we could
write,

#define USHORT unsigned int
which would serve the same effect as:
. typedef unsigned int USHORT;

In this case, the two versions are indeed similar (though there are
some subtle differences), but for more complex type declarations,
#define is inadequate. Suppose, for example, that you want to de-
fine a name that represents pointer to int. Using #define you
would write: '

#define PT_TO_INT int *

Then to declare two pointers to ints, you would write,
PT_TO_INT pl, p2;

which expands to:
int *pl, p2;

Because the asterisk appears just once, only pl is declared as a
pointer to an int; p2 is an int.

If you use a typedef, this problem does not arise. After declaring,
typedef int *PT_TO_INT;

the declaration,
PT_TO_INT pl, p2;

defines both p! and p2 as pointers to ints.

oLl Zyl_i.lbl




Scalar Data Types 63

3.9 Mixing Types

The C language allows you to mix arithmetic types in expressions with few
restrictions. For example, you can write:

num = 3 * 2.1,

even though the expression on the right~hand side of the assignment is a
mixture of two types, an int and a double. Also, the data type of num
could be any scalar data type except a pointer.

To make sense out of an expression with mixed types, C performs con-
versions automatically. These implicit conversions make the program-
mer’s job easier, but it puts a greater burden on the compiler since it is
responsible for reconciling mixed types. This can be dangerous since the
compiler may make conversions that are unexpected. For example, the
expression,

3.0 + 1/2
does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0.

Implicit conversions, sometimes called quiet conversions or automatic
conversions, occur under four circumstances:

1. In assignment statements, the value on the right side of the assign-
ment is converted to the data type of the variable on the left side.
These are called assignment conversions.

2. Whenever a char or short int appears in an expression, it is con-
verted to an int. unsigned chars and unsigned shorts are con-
verted to int if the int can represent their value; otherwise they are
converted to unsigned int (see Box 3-7). These are called integral
widening conversions.

3. In an arithmetic expression, objects are converted to conform to the
conversion rules of the operator.

4. In certain situations, arguments to functions are converted. This
type of conversion is described in detail in later chapters.

As an example of the first type of conversion, suppose j is an int in the
following statement:
j =2.6;

Before assigning the double constant to j, the compiler converts it to an
int, giving it an integral value of 2. Note that the compiler truncates the
fractional part rather than rounding to the closest integer.

The second type of implicit conversion, called integral widening or inte-
gral promotion, is almost always invisible.
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To understand the third type of implicit conversion, we first need to
briefly describe how the compiler processes expressions. The discussion
that follows is only cursory—we describe expressions in detail in Chapter
s.

3.9.1 Implicit Conversions in Expressions

When the compiler encounters an expression, it divides it into subexpres-
sions, where each subexpression consists of one operator and one or
more objects, called operands, that are bound to the operator. For ex-
ample, the expression,

-3/ 4 + 2.5

contains three operators: —, /, and +. The operand to - is 3; there are
two operands to /, -3 and 4; and there are two operands to +, -3/4 and
2.5.

The minus operator is said to be a unary operator because it takes just
one operand, whereas the division and addition operators are binary op-
erators. Each operator has its own rules for operand type agreement, but
most binary operators require both operands to have the same type. If
the types differ, the compiler converts one of the operands to agree with
the other one. To decide which operand to convert, the compiler resorts
to the hierarchy of data types shown in Figure 3-3, and converts the
“lower” type to the “higher” type. For example:

1+ 2.5

involves two types, an int and a double. Before evaluating it, the compil-
er converts the int into a double because double is higher than int in the
type hierarchy. The conversion from an int to a double does not usually
affect the result in any way. It is as if the expression were written:

1.0 + 2.5

The rules for implicit conversions in expressions can be summarized as
follows. Note that these conversions occur after all integral widening
conversions have taken place.

e If a pair of operands contains a long double, the other value is
converted to long double.

® Otherwise, if one of the operands is a double, the other is con-
verted to double.

® Otherwise, if one of the operands is a float, the other is con-
verted to a float.
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® Otherwise, if one of the operands is an unsigned long int, the
other is converted to unsigned long int.

® Otherwise, if one of the operands is a long int, then the other is
converted to long int.

® Otherwise, if one of the operands is an unsigned int, then the
other is converted to unsigned int.

In general, most implicit conversions are invisible. They occur without
any obvious effect. The following sections describe implicit conversions
in more detail.

long double

double

float

unsigned
long int

long int

unsigned

Figure 3-3. Hierarchy of C Scalar Data Types.

3.9.2 Mixing Integers

There are four possible sizes of integers—char, short, int, and long—and
they may be mixed freely in an expression. Due to the integral widening
rules, the compiler converts chars and shorts to ints before evaluating an
expression. This is why Figure 3~3 shows int at the bottom of the in-
verted pyramid—all smaller integer types are converted to int or un-
signed int before an expression is evaluated. For example, in the
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following program, ¢ and j are expanded to ints before the arithmetic ex-
pression is evaluated. The constant 8 is already an int so it does not
need to be converted.

main()

{
char ¢ = §
short j
int k =

7,

k = c+j+8;
exit( 0 );
}

To convert a short 5 to an int, all that is required is to add 2 additional
bytes of zeroes. The short variable with value 5, would be stored in bi-
nary form:

00000000 00000101
After converting it to a four-byte int, its representation is:
00000000 00000000 00000000 000000101

Clearly, this does not present any problems since the object retains its
value of 5. For negative values, the process is slightly more complicated
since the compiler must ensure that the converted value is also negative.
It does this by filling the additional bytes with ones rather than zeroes.
This is known as sign extension. For example, the short value -5 is rep-
resented in two’s complement notation as:

111311111 11111011

To convert it to a long int whose value is -5, the compiler adds two bytes
filled with ones:

11111131131 11111111 13113111311 11111011

Integral widening conversions are almost always innocuous. Problems
arise, however, when an implicit conversion shortens an object. This
only happens’'in assignment conversions. For example, suppose c is a
char, and you make the assignment:

c = 882;
The binary representation of 882 is:
00000011 01110010

It requires two bytes of storage, but the variable ¢ has only one byte allo-
cated for it, so the two upper bits don't get assigned to c. This is known
as overflow and the result is not defined by the ANSI Standard for signed

types.
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Usually, a compiler simply ignores the extra byte, so ¢ would be assigned
the right-most byte:

01110010

This would erroneously give ¢ the value of 114. It is important, there-
fore, to make sure that you do not exceed the size limits when you assign
values to variables. The principle illustrated for chars also applies to
shorts, ints, and long ints. For unsigned types, however, C has well-
defined rules for dealing with overflow conditions. @ When an integer
value x is converted to a smaller unsigned integer type, the result is the
non-negative remainder of,

X / (U_MAX+1)

where U_MAX is the largest number that can be represented in the
shorter unsigned type. For example, if j is an unsigned short, which is
two bytes, then the assignment,

J = 71124;
assigns to j the remainder of:
71124 / (65535+1)

The remainder is 5588. Note that for non-negative numbers, and for
negative numbers represented in two’s complement notation, this is the
same result that you would obtain by ignoring the extra bytes.

3.9.3 Mixing Signed and Unsigned Types

The only difference between signed and unsigned integer types is the way
they are interpreted. They occupy the same amount of storage. For ex-
ample, a signed char with bit pattern

11101010

has a decimal value of -22, assuming two’s complement notation. An
unsigned char with the same binary representation has a decimal value
of 234. A problem arises when you mix a signed type with an unsigned
type. For example, what is the value of this expression?

10u - 15

One might expect the result to be -5, but this is not the case. The ANSI
Standard states that if one of the operands of a binary expression has
type unsigned int and the other operand has type int, the int object is
converted to. unsigned. int,.and.the.result is unsigned. Using this rule,
which is described in more detail in Box 3-7, the value of the expression
shown above would be 4,294,967,291 (assuming the machine has 4-byte
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ints and uses two’s complement notation). This value is derived from the
same bit pattern used to represent -5.

Box 3-7: ANSI Feature — Unsigned Conversions

Prior to the ANSI Standard, there was no agreed-upon method for
promoting unsigned chars and unsigned shorts. Should they be
widened to ints or to unsigned ints? There was also confusion
about converting operands when one was a long unsigned integer
and the other was a short signed integer. Should the short un-
signed integer be widened to an unsigned int, making the result
unsigned, or should it be converted to a signed int, making the re-
sult a signed integer?

Most compilers converted unsigned chars and unsigned shorts to
unsigned ints, figuring that the unsigned quality was too important
to convert away. Likewise, when signed and unsigned objects met
in expressions, the the result was always unsigned. But this sign—
preserving strategy sometimes produces strange results. For exam-
ple, if a is an unsigned short whose value is 2, then the expres-
sion,

a -3

evaluates to a very large unsigned value rather than the signed
value of -1. :

To avoid this problem, the ANSI Committee adopted a different
conversion method, known as value-preserving. This method con-
verts unsigned chars and unsigned shorts to int, assuming that
the int type is larger than unsigned char and unsigned short, re-
spectively. If int is not larger, the object is converted to unsigned
int. Assuming 16-bit shorts and 32-bit ints in the previous ex-
ample, a would be converted to int rather than unsigned int, so
the result of the expression would be =1.

Note that the difference between sign-preserving and value-pre- -
serving rules only becomes manifest when an unsigned type is
shorter than an int. If both operands are unsigned ints, the result
is unsigned, so that the expression,

2u - 3u

always evaluates to a large unsigned value.
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In most cases, the conversion from signed to unsigned does not cause
any problems and goes unnoticed. Where you need to be careful is when
you use an unsigned expression to control program flow. Although the
subject of program flow is discussed in the next chapter, the following ex-
ample should be clear.

main()

{
unsigned jj;
int k;

if (jj-k < 0) /* This is almost certainly a bug. */
foo();
exit( 0 );

}

Translated into English, the program states: “if ji minus k& is less than
zero, call the foo() function; otherwise, end the program.” However, be-
cause of unsigned conversion rules, the expression jj-k will never be less
than zero. This is obviously not what is intended by the programmer.
Good compilers are able to diagnose these bugs and issue a warning mes-
sage.

3.9.4 Mixing Floating-Point Values

There are three types of floating-point values—float, double, and long
double (ANSI extension). There is no difficulty with mixing them in an
expression. After dividing the expression into subexpressions, the com-
piler widens the smaller object of each binary pair to match the wider ob-
ject. If, for example, a binary expression contains a float and a double,
the float would be converted to double. This would not affect their
value in any way and would go unnoticed. It should be pointed out, how-
ever, that many computers perform arithmetic with floats much faster
than with doubles and long doubles. You should only use these larger
types if you need the greater range or precision.

As is the case with mixing integers, the problem with floating-point con-
versions occurs when you assign a larger type to a smaller type. There
are two potential problems. One is the loss of precision, and the other is
an overflow condition. Suppose that on your computer a double can
represent 10 decimal places, and a float can only represent 6 decimal
places. If fis a float variable, and you make the assignment

f = 1.0123456789

the computer rounds the double constant value before assigning it to f.
The value actually assigned to f, therefore, might be 1.012346 (if floats



70 Chapter 3

are only 32 bits long). This probably will not cause any problems unless
your program requires great accuracy. If you need more accuracy, you
should use double or long double variables, not floats.

A more serious problem occurs when the value being assigned is too large
to be represented in the variable. For example, the largest positive num-
ber representable by a float might be 2¢38 (the actual ranges vary from
computer to computer). What happens if you try to execute the following
assignment?

f = 2e40;

The behavior is not defined by the ANSI Standard, but on some comput-
ers this statement would produce a runtime error. A runtime error is an
error that occurs while the program is actually executing, as opposed to
errors that occur when you compile the program (called compile—time er-
rors). Runtime errors are particularly difficult to recover from, so you
should go to great pains to avoid them. If there is any chance that an as-
signment statement will cause a floating-point overflow, you should use a
larger floating—point type.

3.9.5 Mixing Integers with Floating-Point Values

It is perfectly legal to mix integers and floating-point values in an expres-
sion, to assign a floating-point value to an integer variable, or assign an
integer value to a floating—point variable. The simplest case is assignment
of an integer to a floating~point variable. In this case, the integer value is
implicitly converted to a floating—point type. If the floating—point type is
capable of representing the integer, there is no change in value. If fis a
double, the assignment

f = 10;
is executed as if it had been written:
f = 10.0;

This conversion is invisible. There are cases, however, where a floating—
point type is not capable of exactly representing all integer values. Even
though the range of floating—point values is generally greater than the
range of integer values, the precision may not be as good for large num-
bers..In these instances,,conversion of an integer to a floating-point
value may result in a loss of precision. For example, try running the fol-
lowing example on your computer.
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#include <stdio.h>

main ()

{
long int j = 2147483600;
float x;

X =J;
printf( "j is %d\nx is %10f\n", j, x );
exit( 0 );

}

The case of mixing integer and floating—point values in expressions is
similar. The compiler converts all integers into the largest floating—point
type present. If j is an int and f is a float, the expression,

f+ 3
would cause j to be quietly converted to a float. In the expression,
f+3J+ 2.5

both f and j would be converted to doubles because the constant 2.5 is a
double.

The most risky mixture of integer and floating-point values is the case
where a floating—point value is assigned to an integer variable. First, the
fractional part is discarded. Then, if the resulting integer can fit in the
integer variable, the assignment is made. In the following statement, as-
suming j is an int, the double value 2.5 is converted to the int value 2
before it is assigned.

j = 2.5;

This causes a loss of precision which could have a dramatic impact on
your program. The same truncation process occurs for negative values.
After the assignment,

j=-5.8;
the value of j is -S§.

An equally serious situation occurs when the floating-point value cannot
fit in an integer. For example:

j = 999999999999.888888

This.causes.an.overflow.condition.which may halt program execution. As
a general rule, it is a good idea to keep floating—point and integer values
separate unless you have a good reason for mixing them.
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3.10 Explicit Conversions — Casts

The previous section describes quiet conversions that the C language per-
forms under certain circumstances. It is also possible to explicitly convert
a value to a different type. Explicit conversion is called casting, and is
performed with a construct called a cast. To cast an expression, enter
the target data type enclosed in parentheses directly before the expres-
sion. For example,

J = (float) 2;

converts the integer 2 to a float before assigning it to j. Of course, if j is
an integer, the compiler would implicitly convert the value back to an in-
teger before making the assignment.

Casting is a useful operation in a number of diverse situations. Consider,
for example, the following situation:

int j = 2, k = 3;
float f;

f =k/J3;

At first glance, it might appear that the f gets assigned the value 1.5.
However, a closer look reveals that f is actually assigned the value 1.0.
This is because the expression

k/3

contains only ints, so there is no reason to “promote” either variable to a
floating—point type. The result of an integer expression is always an inte-
ger, so the true value 1.5 is truncated to the integer value 1. Then, be-
cause it is being assigned to a floating—point variable, the value 1 is con-
verted to 1.0. One way to avoid this problem is to cast either, or both, of
the integer variables to floats. For instance:

f = (float)j/k;

This explicitly converts j to a float. Then the implicit conversion rules
come into play. Because j has been converted to a float, the system
automatically converts k¥ to a float as well. The result of an expression
containing two floats is a float, so f gets assigned the true expression
value, which is 1.5.
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3.11 Enumeration Types

In addition to integer, floating—point, and pointer types, the scalar types
also include enumeration types. Other computer languages, such as Pas-
cal, also have enumeration types that enable you to declare variables and
the set of named constants that can be legally stored in the variable.

Enumeration types are particularly useful when you want to create a
unique set of values that may be associated with a variable. The compiler
reports an error if you attempt to assign a value that’s not part of the de-
clared set of legal values to an enum variable.

In the following example, we declare two enumeration variables called
color and intensity. color can be assigned one of four constant values:
red, blue, green, and yellow. intensity can be assigned one of three con-
stant values: bright, medium, or dark.

enum { red, blue, green, yellow } color;
enum { bright, medium, dark } intensity;

As shown in our examples, the syntax for declaring enumeration types is
to start with the enum keyword followed by the list of constant names en-
closed in braces, followed by the names of the enum variables. There is
another syntax described in Chapter 8 that is slightly more complex.

Because enumeration types were not part of the original K&R standard,
their implementation has varied from one C compiler to another. Most C
compilers issue warning messages when an enum type conflict occurs, al-
though the warning is not required by the ANSI Standard. (In fact, the
Standard prohibits compilers from halting compilation due to enum type
conflicts.) A good compiler, however, would issue warnings for all of the
type conflicts and misleading usages shown below:

color = yellow; /* OK */

color = bright; /* type conflict */
intensity = bright; /* OK */

intensity = blue; /¥ type conflict */
color = 1; /* type conflict */
color = blue + green; /* misleading usage */

Constant names in an enum declaration receive a default integer value
based on their position in the enumeration list. In most cases, the integer
value is not important because you are treating the enumeration as a
unique value. Nevertheless, it’s helpful to know how the compiler is stor-
ing the values.

The default values start at zero and go up by one with each new name.
In the declaration of color, for instance, red, blue, green, and yellow rep-
resent the integer values 0, 1, 2, and 3, respectively.
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You can override these default values by specifying other values. If you
do specify a value, all subsequent default values begin at one more than
the last defined value. For example,

enum { APPLES, ORANGES = 10, LEMONS, GRAPES = -5,
MELONS };

is the same as:

enum { APPLES=0, ORANGES = 10, LEMONS = 11,
GRAPES = -5, MELONS = —4 };

Note that the assigned values need not be in ascending order, though for
readability it is a good idea to write them that way.

The compiler need only allocate as much memory as is necessary for an
enum value. In our color example, for instance, a good compiler will re-
alize that the potential values of color are small enough that only one byte
is needed for the variable. This can make a difference when enum vari-
ables are embedded in aggregate types, as described in Chapter 8.

3.12 The void Data Type

The void data type was not an original element of the K&R standard, but
in recent years it has become an accepted part of the C language. Prior
to the ANSI Standard, however, its semantics were somewhat vague.
This section describes the ANSI version of void.

The void data type has two important purposes. The first is to indicate
that a function does not return a value. For instance, you may see a
function definition such as:

void func( a, b )
int a, b;

{

}

This indicates that the function does not return any useful value. Like-
wise, on the calling side, you would declare func() as:

extern void func();

This informs the compiler that any attempt to use the returned value
from func() is a mistake and should be flagged as an error. For example,
you could invoke func() as follows:

func( x, ¥y );
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But you cannot assign the returned value to a variable:

num = func( x, y ); /*¥ This should produce an
*¥ error
*/
The other purpose of void is to declare a generic pointer. However, we
defer a discussion of this subject to Chapter 7.
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Exercises

1.

When printing a float or double with the %f format specifier, how
many decimal digits does printf() output? Does printf() round or
truncate the value?

. After reading the description of printf() in Appendix A, write a

function that accepts a double argument and prints it out, but only
prints three decimal digits.

. Write a program with the following declarations in it that prints out

the address of each variable.
char c;
int j;
float x;

What do the addresses tell you about the way your compiler allo-
cates memory for variables?

. Write the octal, decimal, and hexadecimal equivalents of the follow-

ing binary numbers:

a) 00010010

b) 01100101

c) 01101011

d) 10111011 (assume two’s complement notation)
e) 00111111

f) 00000100 01100100

. Write declarations for the following:

a) An unsigned long integer.

b) A double-precision floating—point variable.

¢) A pointer to a char.

d) A char initialized to ‘x’.

e) An external function returning an unsigned int.
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6. Give the binary two’s complement representation of the following:

a) 1

b) -1
c) 255
d) 256
e) 511
f) 512
g) 513
h) 127
iy 128
i -128
k) OxFF
) Ox7F

7. Give the binary one’s complement representation of the numbers
listed in exercise 7.
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Control Flow

“Begin at the beginning,” the King said, very
gravely, “and go on till you come to the end: then
stop.” — Lewis Carroll, Alice in Wonderland

The programs listed in the previous chapter were architecturally simple
because they were straight line programs. That is, statements were exe-
cuted in the order in which they appeared without any branching or repe-
tition. Most programming problems are not so simple. In fact, the great
power of programming languages stems from their ability to instruct the
computer to perform the same task repeatedly, or to perform a different
task if parameters change. In high-level programming languages, this is
accomplished with control flow statements that allow you to alter the se-
quential flow. Control-flow statements fall into two general categories:
conditional branching and looping. Conditional branching is the ability
to decide whether or not to execute code based on the value of an ex-
pression. Looping, also called iteration, is the ability to perform the
same set of operations repeatedly until a special condition is met.
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4.1 Conditional Branching

Conditional branching is the most basic control feature of any program-
ming language. It enables a program to make decisions, to decide
whether or not to execute a sequence of statements based on the value of
an expression. Since the value of the expression may change from one
execution to another, this feature allows a program to react dynamically
to different data. In C, conditional execution is performed with the if
and else keywords. The syntax is shown in Figure 4-1.

The form of an if statement is fairly simple. The if keyword is followed
by an expression enclosed in parentheses. If the expression is “true”
(non-zero), the next statement is executed. Otherwise, execution sKips
over the next statement:

if (x)
statementl; /* Executed only if x is non-zero */
statement?2; /* Always executed. */

expression ——®—> statement _l

statement

Figure 4-1. Syntax of an if...else Statement.

If the else clause is present, the statement following the else keyword is
executed whenever the if expression is “false” (zero):

if (x)

statementl; /* Executed only if X is non-zero */
else

statement2; /* Executed only if x is zero */
statement3; /* Always executed */

This syntax mirrors the syntax we use in everyday language. For exam-
ple, the sentence, “If the light is red, stop; otherwise, go” would be writ-
ten in C as:

if (light == red)
stop;

else
g0;
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Note that there is no then after the if as in other programming languages
such as Pascal and FORTRAN.

A common use of the if statement is to test the validity of data. Suppose,
for example, that you want a program that accepts an integer value from
the user and prints the square root of the number. Before calling the
sqrt() function, which is part of the runtime library, you should make
sure that the input value is non-negative:

#include <stdio.h>
#include <math.h> /* Include file for sqrt() */

main()

{

double num;
printf( "Enter a non-negative number: " );

/* The %1f conversion specifier indicates a
* data object of type double.
*/
scanf( "%1lf", &num );
if (num < 0)
printf( "Input Error: Number is negative.\n" );
else
printf( "The square root is: %f\n", sqrt( num ));
exit( 0 );
}

Note that the else is necessary. If we write the program without the else,
as shown on the next page, the program will print an error message when
the input value is less than zero, but then go ahead and mistakenly try to
print the square root.
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#include <stdio.h>
#include <math.h>

main()

{

double num;

printf( "Enter a non-negative number: " );
scanf ( "%1lf", &num );
if (num < 0)
printf( "Input Error: Number is negative.\n" );
/*¥ Next statement is always executed. */
printf( "The square root is: %f\n", sqrt( num ) );

exit( 0 );
}

The indentations after if and else are included for readability, not for

functionality. The program could be written:

#include <stdio.h>

#include <math.h>

main() {double num;

printf("Enter a non-negative number: ");scanf ("%lf",
&num) ;

if (num <

0) printf("Input Error: Number is negative.\n");
else printf("The square root is: %f\n",

sqrt(num)); exit(0);

}

Although this program will run correctly, it reflects poor programming

style since it is difficult to read. The normal convention is to put the

statement following an if or else on its own indented line. In this book,

we always indent two spaces at a time, although some people prefer to in-
dent 3, 4, or even 8 spaces at a time.
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4.1.1 Comparison Expressions

Typically, the conditional expression in an if statement is a comparison
between two values. Altogether, there are six comparison operators
(sometimes called relational operators), as shown in Table 4-1.

< less than

> greater than
<= less than or equal to
>= greater than or equal to

== equal to

I= not equal to

Table 4-1. Relational QOperators.

Note especially that the “equal to” comparison operator consists of two
equal signs. One of the most common mistakes made by beginners and
experts alike is to confuse the equal to (==) operator with the assignment
operator (=). (See Box 4-1 for a discussion of when this confusion is
particularly dangerous.)

Relational expressions are often called Boolean expressions, in recogni-
tion of the nineteenth century mathematician and logician, George
Boole. Boole reduced logic to a propositional calculus, involving only
true and false values.

Many programming languages, such as Pascal, have Boolean data types
for representing TRUE and FALSE. The C language, however, repre-
sents these values with integers. Zero is equivalent to FALSE, and any
non-zero value is considered TRUE.

Like the arithmetic operators described in Chapter 3, the relational op-
erators are binary operators. The value of a relational expression is an
integer, either 1 (indicating the expression is frue) or 0 (indicating the
expression is false). The examples in Table 4-2 illustrate how relational
expressions are evaluated.
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Expression Value
-1<0 1
0>1 0
0==0 1
1 1= -1 1
1 >= -1 1
1 >10 0

Table 4-2. Relational Expressions.

Box 4-1: Bug Alert — Confusing = with ==

One of the most common mistakes made by beginners and experts
alike is to use the assignment operator (=) instead of the equality
operator (==). For instance:

if (3 = 5)
do_something(); .

What is intended, clearly, is that the do_something() function
should only be invoked if j equals five. It should been written:

if (§ == §5)
do_something();

Note that the first version is syntactically legal since all expressions
have a value. The value of the expression j= 5is 5. Since this is a
non-zero value the if expression will always evaluate to true and
do_something() will always be invoked. There are a few C compil-
ers on the market that are able to recognize this bug and issue a
warning message.

Because Boolean values are represented as integers, it is perfectly legal to
write:
if (3)
Statement;

oLl Zyl_i.lbl
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If j is any non~zero value, statement is executed; if j equals zero, state-
ment is skipped. This aspect of the language creates some interesting
possibilities. Suppose, for instance, that you want to write a program that
reads a character and prints it out if it is a letter of the alphabet, but ig-
nores it if it is not an alphabetic character. Recalling that the runtime li-
brary function isalpha() returns a non-zero value if its argument is a let-
ter, you could write a program that checks whether the input is an alpha-
betic character, as shown on the following page.

#include <stdio.h>
#include <ctype.h> /* included for isalpha() */

main()

{

char ch;

printf( "Enter a character: " );
scanf( "%c", &ch );
if (isalpha( ch ))

printf( "%c", ch );

else

printf( "%c is not an alphabetic character.\n",
ch );

exit( 0 );

}
Note that the statement
if (isalpha( ch ))
is exactly the same as:
if (isalpha( ch ) != 0)

The practice of using a function call as a conditional expression is a com-
mon idiom in C. It is especially effective for functions that return zero if
an error occurs, since you can use a construct such as:

if (func())
proceed;
else
error handler;
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4.1.2 Compound Statements

Any statement can be replaced by a block of statements, sometimes
called a compound statement. A compound statement must begin with a
left brace { and end with a right brace }. A function body, therefore, is
really just a compound statement. Compound statements are particularly
useful when used with flow control statements because they allow you to
execute a group of statements rather than a single statement. To condi-
tionally execute more than one statement, therefore, surround the group
of statements with left and right braces, as shown in the following exam-
ple:

#include <stdio.h>

main()

{

double num;

printf( "Enter a non-negative number: " );
scanf( "%1f", &num );
if (num < 0)
printf( "That’s not a non-negative number!\n" );
else
{
printf( "%f squared is: %f\n", num, num*num );
printf( "%f cubed is: %f\n", num, num*num*num );

}
exit( 0 );
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if (num < 0)
print error

else

{ .
print square
print cube

}

if (num < 0)
print error
else
print square
print cube

Is num
less than
zero
?

yes

Correct Version

Print square
of num

Print error

Print cube
of num

Incorrect Version

Is num
less than
zero
?

yes

Print square
of num

Print error

Print cube
of num

l

Figure 4-2. Braces Ensure Correct Control Flow.
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Box 4-2: Bug Alert — Missing Braces

If we remove the braces after the else phrase in the example in
Section 4.1.2, the program takes on a different meaning, although
it is still a syntactically legal program.

#include <stdio.h>

main()

{

double num;

printf("Enter a non-negative number: ");
scanf( "%1f", &num );
if (num < 0)
printf("That‘s not a non-negative number\n");
else
printf("%f squared is: %d\n", num, num*num);
printf("%f cubed is: %d\n", num,num*num*num) ;
exit( 0. )=

}

The indentation is misleading here because it implies that both the
square and the cube of num will be printed if, and only if, num is
not less than zero. Actually, though, only the first statement after
the else is part of the flow-control logic. The other printf() state-

~ ment is always executed, regardless of num's value. Figure 4-2
shows the logic of the two versions.

This example illustrates the important point that the compiler is
oblivious to formatting. The compiler recognizes syntax, such as
spelling and punctuation, but it completely ignores indentations,

comments, and other formatting aids. The formatting is entirely
for humans.

Ol LEN Zyl_i.lbl
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4.1.3 Nested /f Statements

A single if statement enables the program to choose one of two paths.
Frequently, however, you need to specify subsequent branching. After
making decision 1, you need to make decision 2, then decision 3, etc.
This type of program flow requires a construct called a nested if state-
ment. Suppose, for example, that you want to write a function that ac-
cepts three integers, and returns the one that has the smallest value. Us-
ing nested if statements, you could write the function shown in Figure
4-3,

The else phrases, except for the last one, are all necessary to provide
correct conditional execution. It is a worthwhile exercise to draw a pro-
gram flow diagram with the else phrases omitted. Note that when an else
is immediately followed by an if, they are usually placed on the same
line. This is commonly called an else if statement, although it is really an
if statement nested within an else phrase.

int min(a, b, c)
int a, b, c;
{
if (a <b)
if(a < c)
return a;
else
return c;
else if (b <¢)
return b;
else
return c;

return a return c return b return ¢

Figure 4-3. Logic of a Nested if Statement.
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Box 4-3: Bug Alert — The Dangling else

Nested if statements create the problem of matching each else
phrase to the right if statement. This is often called the dangling
else problem. In the min() function, for example, note that the
first else is associated with the second if. The general rule is:

An else is always associated with the nearest previous if.

Each if statement, however, can have only one else phrase. The
next else phrase in min(), therefore, corresponds to the first if
because the second if has already been matched up. The final
else phrase corresponds to the third if statement (which is written
as an else if).

It is important to format nested ifs correctly to avoid confusion.
An else phrase should always be at the same indentation level as
its associated if.

4.2 The switch Statement

When there are many paths in a program, if-else branching can become
so convoluted that it is difficult to follow. These situations are usually
prime candidates for use of the switch statement. The switch statement
allows you to specify an unlimited number of execution paths based on
the value of a single expression. For example, the following function has
five branches based on the value of input_arg.

int switch_example( input_arg )
char input_arg;
{
switch ( input_arg )
{
case “A”: return 1
case “B’: return 2;
case “C’: return 3
case “D”: return 4,
default : return -1;
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The function returns 1, 2, 3, or 4 depending on whether input_arg is "A’,
'B’, ’C’, or 'D’, respectively. If input_arg is anything else, the function
returns —1. The same function can be written using ifs and elses:

int switch_example( input_arg )
char input_arg;
{
if (input_arg == "A”)
return 1;
else if (input_arg == “B")
return 2;
else if (input_arg == “C”)
return 3;
else if (input_arg == “D”)
return 4;
else
return -1;

}

Note that we line up all the else if statements at the same indentation
level to emphasize that it is a multi-branching construct. Even with this
formatting, though, the version using switch is considerably more read-
able. In addition, switch statements often result in more efficient ma-
chine code.

4.2.1 Syntax of a switch Statement

The formal syntax of a switch statement is shown in Figure 4-4. The ex-
pression immediately after the switch keyword must be enclosed in pa-
rentheses and must be an integral expression. That is, it can be char,
short, int or long, but not float, double, or long double. (Note: the
K&R standard requires the expression to be of type int.) The expres-
sions following the case keywords must be integral constant expressions,
meaning they may not contain variables.

The semantics of the switch statement are straightforward. The switch
expression is evaluated, and if it matches one of the case labels, program
flow continues with the statement that follows the matching case label. If
none of the case labels match the switch expression, program flow con-
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