
www.manaraa.com

www.manaraa.com

Springer Books on Professional Computing

www.manaraa.com

Springer Books on Professional Computing

Computer Confidence: A Human Approach to Computers
Bruce D. Sanders. viii, 90 pages. 23 figures. 1984. ISBN 0-387-90917-6

The Unix System Guidebook: An Introductory Guide for Serious Users
Peter P. Silvester. xi, 207 pages. 6 figures. 1984. ISBN 0-387-90906-0

The American Pascal Standard: With Annotations
Henry Ledgard. vii, 97 pages. 1984. ISBN 0-387-91248-7

Modula-2 for Pascal Programmers
Richard Gleaves. x, 145 pages. 18 figures. 1984. ISBN 0-387-96051-1

Ada ® in Practice
Christine N. Ausnit, Norman H. Cohen, John B. Goodenough, R. Sterling Eanes.
xv, 192 pages. 79 figures. 1985. ISBN 0-387-96182-8

The World of Programming Languages
Michael Marcotty, Henry Ledgard. xvi, 360 pages. 30 figures. 1986.
ISBN 0-387-96440-1

Taming the Tiger: Software Engineering and Software Economics
Leon S. Levy. viii, 248 pages. 9 figures. 1987. ISBN 0-387-96468-1

Software Engineering in C
Philip E. Margolis, Peter Darnell. xv, 612. 62 figures. 1988.
ISBN 0-387-96574-2

www.manaraa.com

Peter A. Darnell Philip E. Margolis

Software
Engineering in C

With 62 Illustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

www.manaraa.com

Peter A. Darnell
Senior Software Engineer
Stellar Computer Inc.
95 Wells Avenue
Newton, MA 02159, USA

Philip E. Margolis
Senior Writer
Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824, USA

Library of Congress Cataloging-in-Publication-Data
Margolis, Philip E.

Software engineering in C.
(Springer books on professional computing)
Bibliography: p.
Includes index.
I. Computer software-Development. 2. C (Computer

program language) I. Darnell, Peter. II. Title.
III. Series.
QA76.76.D47M364 1988 005.13'3 87-27515

© 1988 by Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA),
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Text prepared by the authors using Interieaf/Apolio DN 3000 workstation.

9 8 7 6 5 4 3 2 I

ISBN-I3: 978-0-387-%574-1 e-ISBN-I3: 978-1-46~308-4
DOl: IO.l0071978-1-46~308-4

www.manaraa.com

In memory of Roo Darnell,
friend and brother, and one of the most

promising young software engineers
we have ever known.

www.manaraa.com

'" 1-
J .,

... .£'

" • (' '-- : ', 'f

., r"" :,

;J> ~

www.manaraa.com

Preface

This book describes the C programming language and software engineer­
ing principles of program construction. The book is intended primarily as
a textbook for beginning and intermediate C programmers. It does not
assume previous knowledge of C, nor of any high-level language, though
it does assume that the reader has some familiarity with computers.
While not essential, knowledge of another programming language will
certainly help in mastering C.

Although the subject matter of this book is the C language, the emphasis
is on software engineering-making programs readable, maintainable,
portable, and efficient. One of our main goals is to impress upon readers
that there is a huge difference between programs that merely work, and
programs that are well-engineered, just as there is a huge difference be­
tween a log thrown over a river and a well-engineered bridge.

The book is organized linearly so that each chapter builds on information
provided in the previous chapters. Consequently, the book will be most
effective if chapters are read sequentially. Readers with some experience
in C, however, may find it more useful to consult the table of contents
and index to find sections of particular interest.

Each chapter is autonomous inasmuch as it covers a single, well-defined
area of the C language, such as scalar data types or control flow. More­
over, the chapters themselves are organized linearly, so that each section
uses information provided in earlier sections. Again, experienced C pro­
grammers may want to skim introductory sections.

www.manaraa.com

viii Preface

Although this book covers all C features, it makes no claim to being a ref­
erence manual. The organization and pace is designed for those learning
the language rather than those who already know the language. If you
plan to do extensive programming in C, we recommend that you supple­
ment our book with C: A Reference Manual, by Harbison and Steele.

This book describes all features of the C language defined by Kernighan
and Ritchie (known as the K&R standard), as well as all features defined
in the C Standard proposed by the American National Standards Institute
(ANSI). Where the two versions differ, we highlight the difference either
by explicitly describing each version in the text or by describing the ANSI
feature in a shaded box. A list of differences between the two standards
appears in Appendix E. For more information about the ANSI Stan­
dard, you should read the official specification, which you can obtain by
writing to:

American National Standards Institute
1430 Broadway
New York, NY 10018

In addition to using shaded boxes to describe ANSI extensions, we also
use boxes to highlight common errors made by C programmers. These
"Bug Alerts" are intended as buoys to mark places where we and others
have run aground.

The examples in this book have all been tested on three machines: A
PC-compatible Zenith Z-151 running the Microsoft Version 3.0 C com­
piler, an Apollo DN3000 running the DOMAIN C compiler (Version
4.78), and a Sun Microsystems 3/50 computer running tVersion 3.1 of
the Sun compiler. Whenever possible, we have tried to use realistic ex­
amples gleaned from our own experiences. Occasionally we refer to "our
machine", which means any of these three computers. The most signifi­
cant aspect of "our machine" is that it allocates four bytes for ints.

Appendix A describes all of the runtime library functions defined in the
ANSI standard. Many of these functions are derived from UNIX func­
tions and are present in current C runtime libraries. Be careful, though,
because some ANSI functions behave differently from identically-named
functions in older libraries.

Appendix B shows the syntax of the ANSI C language in the form of
"railroad diagrams." Each rectangular box in a diagram represents an­
other diagram defined elsewhere. Items that appear in ovals are C key­
words and predefined names that must appear exactly as they are written.
Circles are used to represent punctuation tokens. Unless stated otherwise,
it is always legal to insert spaces and newlines between one item and an­
other.

Appendix C lists all names reserved by the ANSI standard. This includes
keywords, library function names, and type definitions used by the li-

www.manaraa.com

Preface ix

brary. You should avoid declaring variables that conflict with these
names.

Appendix D lists certain ranges that an ANSI-conformig compiler must
support. This includes, for example, the range of values that must be
representable in a floating-point number.

Appendix E lists the major differences between the ANSI Standard and
the K&R standard. Each entry in this list contains a reference to the sec­
tion in the book where the difference is described. Note that this list is
not exhaustive.

Appendix F contains the source listings for a C interpreter. In Chapter
12, we refer to this program as an example of using good engineering
techniques to produce a large software product.

Acknowledgements
First and foremost, we wish to acknowledge our debt to the authors of
the two most influential books about C: Samuel Harbison, Brian Ker­
nighan, Dennis Ritchie, and Guy Steele.

In addition to the books by these authors, we also leaned heavily on the
Draft Proposed ANSI Standard, and we thank all of the members of the
ANSI X3J 11 Subcommittee for their efforts in creating this document.

Many people reviewed various parts of this book at various stages. \Ve
are indebted to all of them, particularly David Boyce, Gary Bray, Nor­
man Garfinkle, John Humphrys, Ben Kingsbury, Diane Margolis, Doug
McGlathery, Beth O'Connell, John Peyton, Bill Plauger, Barry Rosen­
berg, Jim Van Seder, Kincade Webb, Bob Weir, and John Weiss. We
are also indebted to the software development team at Dynatech Data
Systems, especially Elizabeth Stark and Jonathan Edney. Special thanks
go to Chuck Connell, Sam Harbison, and Tom Pennella, who read the
manuscript in its entirety and offered numerous invaluable suggestions.
We would also like to thank Kathy Ford for her assistance in preparing
the artwork, and Andrea Morris for her expert editorial advice. Natu­
rally, we accept responsibility for any flaws that remain.

Finally we would like to thank Apollo Computer Inc. and Stellar Com­
puter Inc. for providing the working environments in which to produce
this book. The entire book was formatted using the Interleaf Version 3.0
electronic publishing system running on an Apollo DN3000 workstation.

www.manaraa.com

x Preface

Suggested Reading
We have found the following books· extremely helpful in mastering C and
in absorbing general software engineering principles.

Aho, Alfred V., and Jeffrey P. Ullman. Principles of Compiler De­
sign. Addison-Wesley, 1972.

Brooks, Frederick P., Jr. The Mythical Man Month: Essays on Soft­
ware Engineering. Addison-Wesley, 1974.

Date, C. J. An Introduction to Database Systems. 4th ed. Addsion­
Wesley, 1986.

Foley, J. D., and A. Van Dam. Fundamentals of Computer Graph­
ics. A4dison-Wesley, 1980.

Harbison, Samuel P., and Guy L. Steele Jr. C: A Reference Manual.
2d ed. Prentice Hall, 1984.

Kernighan, Brian W., and P. J. Plauger. Software Tools. Addison­
Wesley, 1976.

Kernighan, Brian W., and P. J. Plauger. Elements of Programming
Style. McGraw-Hill, 1978.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, 1978.

Knuth, Donald E. The Art of Computer Programming. Addison­
Wesley, 1973.

Shore, John. The Sacher Torte Algorithm. Penguin Books, 1986.

www.manaraa.com

Table of Contents

Chapter 1

Introduction To Programming 1

1.1 High-Level Programming Languages . 3
1. 2 History of C 5
1.3 ANSI Standard. 6
1.4 Nature of C . 8

Chapter 2

C Essentials. 9

2.1 Program Development 9
2.2 Functions.. 14
2.3 Anatomy of a C Function 18
2.4 Formatting Source Files 26
2.5 The main() Function 28
2.6 The printf() Function. .. 31
2.7 The scanf() Function. .. 33
2.8 The Preprocessor 34
Exercises .. 38

Chapter 3

Scalar Data Types 39

3.1 Declarations.. 40
3.2 Different Types of Integers 42
3.3 Different Kinds of Integer Constants. 47
3.4 Floating-Point Types 52
3.5 Initialization.. 55
3.6 Finding the Address of an Object. .. 56
3.7 Introduction to Pointers 57
3.8 Typedefs.. 61
3.9 Mixing Types. .. 63
3. 10 Explicit Conversions - Casts 72
3.11 Enumeration Types .. 73
3.12 The void Data Type. .. 74
Exercises .. 76

www.manaraa.com

xii Contents

Chapter 4

Control Flow .. 78

4.1 Conditional Branching 79
4.2 The switch Statement " 89
4.3 Looping... 95
4.4 Nested Loops 107
4.5 A Simple Calculator Program 110
4.6 The break and continue Statements. 111
4.7 The goto Statement 113
4.8 Infinite Loops 114
Exercises .. 116

Chapter 5

Operators and Expressions .. 118

5.1 Precedence and Associativity .. 121
5.2 Unary Minus Operator 124
5.3 Binary Arithmetic Operators 125
5.4 Arithmetic Assignment Operators 128
5.5 Increment and Decrement Operators 132
5.6 Comma Operator 137
5.7 Relational Operators " 13 8
5.8 Logical Operators 140
5.9 Bit-Manipulation Operators 144
5.10 Bitwise Assignment Operators 152
5.11 Cast Operator 152
5.12 sizeof operator 154
5.13 Conditional Operator (7 :) 155
5.14 Memory Operators 156
Exercises .. 157

Chapter 6

Arrays and Pointers. .. 159

6.1 Declaring an Array 160
6.2 How Arrays Are Stored in Memory 162
6.3 Initializing Arrays 163
6.4 Array Example: Encryption and Decryption 166
6.5 Pointer Arithmetic 168
6.6 Passing Pointers as Function Arguments 169
6.7 Accessing Array Elements Through Pointers 172

www.manaraa.com

Contents xiii

6.8 Passing Arrays as Function Arguments 174
6.9 Sorting Algorithms 176
6.10 Strings .. 179
6.11 Multidimensional Arrays " , 195
6.12 Arrays of Pointers 202
6.13 Pointers to Pointers 206
Exercises ... 212

Chapter 7

Storage Classes .. 215

7.1 Fixed vs. Automatic Duration 216
7.2 Scope ... 220
7.3 Global Variables 225
7.4 The register Specifier 230
7.5 Summary of Storage Classes 235
7.6 Dynamic Memory Allocation 237
Exercises .. 241

Chapter 8

Structures and Unions 243

8.1 Structures ... 243
8.2 Linked Lists 264
8.3 Unions .. 271
8.4 enum Declarations 279
Exercises ... 280

Chapter 9

Functions .. 281

9.1 Passing Arguments 281
9.2 Declarations and Calls 284
9.3 Pointers to Functions 295
9.4 Recursion .. 306
9.5 The mainO Function 309
9.6 Complex Declarations 310
Exercises .. 314

www.manaraa.com

xiv Contents

Chapter 10

The C Preprocessor 316

10.1 Macro Substitution 317
10.2 Conditional Compilation 330
10.3 Include Facility .. 335
10.4 Line Control 336
Exercises. .. 339

Chapter 11

Input and Output. .. 340

11.1 Streams ... 341
11.2 Buffering .. 343
11.3 The <stdio.h> Header File 345
11.4 Error Handling 345
11.5 Opening and Closing a File 347
11.6 Reading and Writing Data 350
11. 7 Selecting an I/O Method 357
11.8 Unbuffered I/O 359
11.9 Random Access 360
Exercises. .. 372

Chapter 12

Software Engineering " 373

12.1 Product Specification 376
12.2 Software Design 382
12.3 Project Management and Cost Estimation 389
12.4 Software Tools for Software Production 395
12.5 Debugging ... 397
12.6 Testing .. 400
12.7 Performance Analysis 401
12.8 Documentation 401
Exercises ... 403

Appendix A The ANSI Runtime Library 405

A.l Function Names 406
A.2 Header Files 406
A.3 Synopses .. 407
A.4 Functions vs. Macros 408

www.manaraa.com

Contents xv

A.S Error Handling 409
A.6 Diagnostics....................................... 410
A.7 Character Handling 411
A.S Setting Locale Parameters 413
A.9 Mathematics 415
A.IO Non-Local Jumps 420
A. 11 Signal Handling 422
A.12 Variable Argument Lists. .. 425
A.13 I/O Functions 427
A.14 General Utilities 455
A.IS String-Handling Functions 465
A.16 Date and Time Functions .. 472

Appendix B Syntax of ANSI C 478

Appendix C Implementation Limits 495

C.l Translation Limits 495
C.2 Numerical Limits 496

Appendix D Differences Between the ANSI and K&R
Standards 500

D.l Source Translation Differences 500
D.2 Data Type Differences 502
D.3 Statement Differences 505
D.4 Expression Differences 505
D.S Storage Class and Initialization Differences 507
D.6 Preprocessor Differences 509

Appendix E Reserved Names 512 ,

Appendix F C Interpreter Listing 519

Appendix G ASCII Codes . • .. 584

Index , , I •• 586

www.manaraa.com

xvi Contents

List of Figures

Figure 1-1. Language Spectrum .. 2
Figure 1-2. Different Compilers for Different Machines 4
Figure 2-1. Stages of Program Development. 10
Figure 2-2. Compiling and Linking 11
Figure 2-3. Software Hierarchy 15
Figure 2-4. Elements of a Function 18
Figure 2-5. Anatomy of the square() Function 19
Figure 2-6. Memory after j = 5 ... 10 22
Figure 2-7. Syntax of an Assignment Statement 26
Figure 3-1. Hierarchy of C Data Types 40
Figure 3-2. Dereferencing a Pointer Variable " 59
Figure 3-3. Hierarchy of C Scalar Data Types 65
Figure 4-1. Syntax of an if ... else Statement 79
Figure 4-2. Braces Ensure Correct Control Flow 86
Figure 4-3. Logic of a Nested if Statement 88
Figure 4-4. Syntax of a switch Statement 91
Figure 4-5. Syntax of a while Statement 95
Figure 4-6. Flow Control of a while Statement 96
Figure 4-7. Syntax of a do ... while Statement 98
Figure 4-8. Syntax of a for Statement 99
Figure 5-1. Evaluation of an Expression Enclosed By

Parentheses 122
Figure 5-2. Representation of an Expression as an Inverted

BinaryTree .. 123
Figure 5-3. Arithmetic Assignment Operator Equivalences 131
Figure 6-1. Syntax of an Array Declaration 160
Figure 6-2. Storage of an Array 162
Figure 6-3. Initialization of Arrays 164
Figure 6-4. Passing the Wrong Pointer Type 171
Figure 6-5. Storage of a String 181
Figure 6-6. Storage of a Multidimensional Array " 196
Figure 6-7. Array of Pointers 203
Figure 6-8. Storage of an Array of Pointers to Strings 205
Figure 6-9. A Pointer to a Pointer 207
Figure 7-1. Hierarchy of Active Regions (Scopes) 221
Figure 8-1. Memory Storage for the vs Structure 245
Figure 8-2. Allocation Without Alignment Restrictions 255
Figure 8-3. Allocation with Alignment Restrictions 255

www.manaraa.com

Contents xvii

Figure 8-4. Syntax of Bit Field Declarations 256
Figure 8-5. Storage of Three Consecutive Bit Fields 257
Figure 8-6. Alternative Storage of Three Consecutive Bit Fields. 257
Figure 8-7. Storage of Two Consecutive Bit Fields 258
Figure 8-8. Storage of the DATE Structure with Bit Fields 259
Figure 8-9. Alternative Storage of the DATE Structure with

Bit Fields .. 259
Figure 8-10.A Singly Linked List " 265
Figure 8 -11. Linked-List Insertion 269
Figure 8-12.Linked-List Deletion .. : 269
Figure 8-13.Example of Union Memory Storage 271
Figure 8-14.Storage in example Union After Assignment 272
Figure 9-1. Pass By Reference vs. Pass By Value 282
Figure 9-2. Syntax of a Function Definition 285
Figure 9-3. Syntax of a return Statement 287
Figure 9-4. Syntax of a Function Allusion 289
Figure 9-5. Syntax of a Function Call 291
Figure 9-6. Recursion 308
Figure 10-1. Syntax of a Function-Like Macro 320
Figure 10-2. Syntax of Conditional Compilation Directives 330
Figure 10-3. Syntax of the #line Directive 336
Figure 11-1. Streams 341
Figure 12-1. Balanced Binary Tree Implementation of a

Symbol Table 385
Figure 12-2. Inblanaced Binary Tree Implementation of a

Symbol Table 386
Figure 12-3. Typical Software Development Curve 391
Figure 12-4. Time Lines and Milestones for the cint Project. ... 393
Figure 12-5. Directory Structure for C Interpreter Project

Containing Debug and Edit Subsystems 394

www.manaraa.com

xviii Contents

List of Tables
Table 2-1. Legal and Illegal Variable Names 23
Table 2-2. Reserved C Keywords 23
Table 3-1. Scalar Type Keywords. .. 41
Table 3-2. Size and Range of Integer Types on Our Machine .. 44
Table 3-3. Integer Constants 48
Table 3-4. Types of Integral Constants 49
Table 3-5. C Escape Sequences .. 50
Table 3-6. ANSI Trigraph Sequences 51
Table 3-7. Legal and Illegal Floating-Point Constants 54
Table 4-1. Relational Operators 82
Table 4-2. Relational Expressions. .. 83
Table 5-1. Precedence and Associativity of C Operators 120
Table 5-2. Unary Arithmetic Operators. 124
Table 5-3. Binary Arithmetic Operators 125
Table 5-4. Examples of Expressions Using Arithmetic Operators. 126
Table 5-5. Arithmetic Assignment Operators 128
Table 5-6. Examples of Expressions Using Arithmetic

Assignment Operators .. 132
Table 5-7. The Increment and Decrement Operators 133
Table 5-8. Examples of Expressions Using the Increment and

Decrement Operators 135
Table 5-9. The Comma Operator 137
Table 5-10. The Relational Operators 138
Table 5-11. Examples of Expressions Using the Relational

Operators. .. 139
Table 5-12. The Logical Operators 140
Table 5-13. Truth Table for C's Logical Operators 141
Table 5-14. Examples of Expressions Using the Logical

Operators. .. 142
Table 5-15. The Bit-Manipulation Operators 144
Table 5-16. Examples Using the Shift Operators 145
Table 5-17. Shifting Negative Numbers 145
Table 5-18. Decimal, Hexadecimal, Binary, and Octal Versions

of the Integers Zero Through 15 147
Table 5-19. The Bitwise AND Operator 147
Table 5-20. Examples Using the Bitwise Inclusive OR Operator . 147
Table 5-21. Example Using the XOR Operator , 148
Table 5-22. Example Using the Bitwise Complement Operator ., 148
Table 5-23. The Bitwise Assignment Operators. 152

www.manaraa.com

Contents xix

Table 5-24. The Cast Operator 152
Table 5-25. The sizeof Operator 154
Table 5-26. The Conditional Operator 155
Table 5-27. The Memory Operators 156
Table 6-1. String Functions in the Standard Library 194
Table 7-1. Semantics of Storage Class Specifiers 236
Table 9-1. Legal and Illegal Declarations in C 313
Table 11-1. fopen 0 Text Modes 347
Table 11-2. File and Stream Properties of fopenO Modes 348
Table 11-3. I/O to stdin and stdout 369
Table 11-4. I/O to files. .. 369
Table 11-5. Error-Handling Functions 371
Table 11-6. File Management Functions 371
Table 12-1. Summary of Programming Style Issues 375
Table 12-2. List of Modules in the C Interpreter 383
Table A-1. Header Files for the Runtime Library 407
Table A-2. Character Testing Functions 412
Table A-3. Trigonometric and Hyperbolic Functions 417
Table A-4. Signal Handling Macros 423
Table A-5. The fopenO Modes 430
Table A-6. printfO Conversion Characters. 438
Table A-7. printfO Flag Characters 441
Table A-8. scanfO Conversion Characters 447
Table A-9. Format Specifiers for the ctimeO Function 476
Table E-1. Reserved Names 518

www.manaraa.com

xx

Box 2-1
Box 2-2
Box 2-3
Box 3-1
Box 3-2
Box 3-3
Box 3-4
Box 3-5
Box 3-6
Box 3-7
Box 4-1
Box 4-2
Box 4-3
Box 4-4
Box 4-5
Box 5-1
Box 5-2
Box 5-3
Box 5-4
Box 6-1
Box 6-2
Box 6-3
Box 6-4

Box 7-1
Box 7-2
Box 7-3

Box 7-4
Box 7-5

Box 7-6
Box 8-1
Box 8-2
Box 8-3
Box 9-1
Box 11-1

Contents

List of Boxes
Compiling and Linking in a UNIX Environment 12
The Mailbox Analogy .. 24
Bug Alert - No Nested Comments " 28
ANSI Feature - signed Qualifier 45
ANSI Feature - unsigned Constants 49
ANSI Feature - Trigraph Sequences 51
ANSI Feature - long double Type 53
ANSI Feature - float and long double constants .. 54
Bug Alert - Confusing typedef with #define 62
ANSI Feature - Unsigned Conversions 68
Bug Alert - Confusing = with == 83
Bug Alert - Missing Braces 87
Bug Alert - The Dangling else 89
Bug Alert - Off-By-One Errors 104
Bug Alert - Misplaced Semicolons. 106
Bug Alert - Integer Division and Remainder. 129
Bug Alert - Side Effects 136
Bug Alert - Comparing Floating-Point Values. 139
Bug Alert - Side Effects in Relational Expressions 142
ANSI Feature - Initialization of Arrays. 165
Bug Alert - Walking Off the End of an Array 177
ANSI Feature - String Concatenation 187
Bug Alert - Referencing Elements in a
Multidimensional Array 199
ANSI Note - Scope of Function Arguments , 224
Bug Alert - The Dual Meanings of static 225
Non-ANSI Strategies for Declaring Global
Variables 228
ANSI Feature - The const Storage-Class Modifier 231
ANSI Feature - The volatile Storage-Class
Modifier , 233
ANSI Feature - Generic Pointers. 240
ANSI Feature - struct and union Name Spaces .. 253
Bug Alert - Passing Structures vs. Passing Arrays .. 261
ANSI Feature - Initializing Unions 275
ANSI Feature - Function Prototypes 292
Bug Alert - Opening a File 349

www.manaraa.com

Chapter 1

Introduction To Programming

You cannot endow even the best machine with
initiative. - Walter Lippmann, A Preface to
Politics

Although computers are capable of performing complex and difficult op­
erations, they are inherently simple-minded and docile machines. They
must be told exactly what to do, and they must be instructed in a precise
and limited language that they can comprehend. These instructions are
known as software. The machinery that actually executes the instructions
is known as hardware.

At the hardware level, computers understand only simple commands,
such as "copy this number," "add these two numbers," and "compare
these two numbers." These modest commands constitute the computer's
instruction set and programs written using these instructions are said to
be written in the computer's machine language.

One of the surprising aspects of computer science is the rich array of use­
ful operations that can be performed by combining these simple instruc­
tions. Unfortunately, it is extremely tiresome to write programs in ma­
chine language because even the simplest tasks require many instructions.
Moreover, in most machine languages, everything-instructions, data,
variables-is represented by binary numbers. Binary numbers are com­
posed entirely of zeroes and ones (each digit is called a bit, short for "bi­
nary digit"). These programs, consisting of a jumble of zeroes and ones,
are difficult to write, read, and maintain.

www.manaraa.com

2 Chapter 1

In the 1940s and 1950s, all programs were written in machine language,
or its close cousin, assembly language. Assembly language is a major im­
provement over machine language, although it is only once removed from
the computer's instruction set. In assembly language, each instruction is
identified by a short name rather than a number, and variables can be
identified by names rather than numbers. Programs written in assembly
language require a special program, called an assembler, to translate as­
sembly language instructions into machine instructions. Today, programs
are written in assembly language only when execution speed is a high pri­
ority.

The vast majority of programs written today are written in languages that
more closely resemble human languages. These languages, called high­
level languages, were first developed in the 1950s and 1960s so that pro­
grammers could write programs in a language more natural to them than
the computer's restrictive language .

One can view programming languages as lying along a spectrum with ma­
chine languages at one end and human languages, such as French and
English, at the other end (see Figure 1-1). High-level programming lan­
guages fall somewhere in between these extremes, usually closer to the
machine language. High-level languages allow programmers to deal with
complex objects without worrying about details of the particular computer
on which the program is running. Of course programming languages dif­
fer from human languages since they are designed solely to manipulate
information. They are also much more limited and precise than human
languages.

high-level languages

assembly languages

Figure 1-1. Language Spectrum. Computer languages lie along a
spectrum with machine languages at one end and
human languages at the other end.

www.manaraa.com

Introduction

1.1 High-Level Programming
Languages

3

Every high-level language requires a compiler or interpreter to translate
instructions in the high-level programming language into low-level in­
structions that the computer can execute. The remainder of this section
applies only to compilers. We describe interpreters in Chapter 12.

A compiler is similar to an assembler, but much more complex. There is
a one-to-one correspondence between assembly language instructions
and machine instructions. In contrast, a single instruction in a high-level
language can produce many machine instructions.

The farther the programming language is from machine language, the
more difficult it is for the compiler to perform its task. But languages that
are far removed from the computer architecture offer two main advan­
tages:

• High-level languages remove the programmer from the
idiosyncracies of each computer architecture.

• Programs written in high-level languages are easier to read and
maintain.

Once a programmer has learned a high-level language, he or she need
not be preoccupied with how the compiler translates programs into a ma­
chine language. As a result, programs written for one computer can be
executed on another computer merely by re-compiling them. This fea­
ture is known as software portability. In Figure 1-2, for instance, a sin­
gle program written in a high-level language is translated into three ma­
chine language programs by three separate compilers.

Another advantage of high-level languages is readability. Their relative
closeness to human languages makes programs not only easier to write,
but easier to read as well. The operation of a well-written program in a
high-level language can be readily apparent to a reader because the sym­
bols and instructions resemble human symbols and instructions rather
than the computer's internal symbols and instructions. In contrast, even
the best-written assembly language programs must be closely analyzed to
construe their operation. For example, consider the simple C statement,

a = b+c-2;

which assigns the value "b plus c minus 2" to a, where a, b, and care
variables.

www.manaraa.com

4

In assembly language, this could be written:

LOAD b, %rO
LOAD c, %rl
ADD %rO, %rl
SUB &2, %rl
STORE %rl, a

Chapter 1

Obviously, the C version is easier to read and understand.

machine
language

program for
computer X

program written in a
high-level language

machine
language

program for
computer Y

machine
language

program for
computer Z

Figure 1-2. Different Compilers for Different Machines. The same
program written In a high-level language can be
compiled into different machine language programs to
run on different computers.

Closely related to readability is maintainability. Because they are more
readable, programs written in high-level languages are much easier to
modify and debug.

Despite these advantages, there are prices to pay when using high-level
languages. The most important price that must be, paid is reduced effi­
ciency. When a compiler translates programs into machine language, it
may not translate them into the most efficient machine code. Just as it is
possible to use different words to say the same thing, it is also possible to
use different machine instructions to write functionally equivalent pro­
grams. Some combinations of instructions execute faster than others. By
writing directly in the machine language. it is usually possible to select the
fastest version. Writing in a high-level language, the programmer has lit­
tle control over how a compiler translates code. The result, especially
when an unsophisticated compiler is used, carr be inefficient code.

www.manaraa.com

Introduction 5

Nevertheless, high-level languages are superior to machine and assembly
languages in most instances. For one thing, sophisticated compilers can
perform tricks to gain efficiency that most assembly language program­
mers would never dream of. The main reason for the superiority of high­
level languages, however, is that most of the cost of software development
lies in maintenance, where readability and portability are crucial.

The issues raised-portability, efficiency, and readability-are central
concepts that we will revisit throughout this book. Many of the assumed
advantages of high-level languages, such as portability and readability,
are only enjoyed by careful programming. Likewise, the disadvantages,
such as reduced efficiency, can be mitigated once the language is well un­
derstood.

1.2 History of C
The C language was first developed in 1972 by Dennis M. Ritchie at
AT&T Bell Labs as a systems programming language-that is, a language
to write operating systems and system utilities. Operating systems are the
programs that manage the computer's resources. Well-known examples
of operating systems include MS/DOS for IBM PC-compatible comput­
ers, VMS for V AXes, and UNIX, which runs on a variety of computers.

Ritchie's intent in designing C was to give programmers a convenient
means of accessing a machine's instruction set. This meant creating a
language that was high-level enough to make programs readable and
portable, but simple enough to map easily onto the underlying machine.

C was so flexible, and enabled compilers to produce such efficient ma­
chine code, that in 1973, Ritchie and Ken Thompson rewrote most of the
UNIX operating system in C. Traditionally, operating systems were writ­
ten in assembly language because execution speed was critical and be­
cause only assembly languages gave programmers the full control they
needed to access special memory locations. The coding of UNIX in C
demonstrated C's value as a systems programming language. It repre­
sented the first time that a high-level language was designed specifically
for systems development.

The main advantages of writing an operating system in a high-level lan­
guage are speed of implementation and maintainability. A fortuitous
side-effect, however, is that the operating system can be moved to other
computers by recompiling it on the target machines. This process is
called porting. UNIX was originally written for a DEC PDP-7 in a lan­
guage called B (C's predecessor). Later, UNIX was ported to a PDP-l1
and recoded in C. Before long, UNIX was ported to other types of com­
puters. Every port required a new C compiler so the fortunes of C and
UNIX were tightly bound. For C, this was both good and bad. On the

www.manaraa.com

6 Chapter 1

one hand, the language spread more quickly than it might have on its
own. On the other hand, C was, in many people's minds, sttictly a UNIX
systems language. It is only in recent years that C has come to be viewed
as a more general-purpose programming language.

The only formal specification for the C language was a document written
by Ritchie entitled The C Reference Manual. In 1977, Ritchie and Brian
Kernighan expanded this document into a full-length book called The C
Programming Language (often referred to as the K&R standard).
Though a useful reference guide for programmers, it was unsatisfactory
for compiler builders because too many details were omitted. Despite its
shortcomings, it remained for years the only C text and acquired the
status of a de facto standard.

In the early days of C, the language was used primarily on UNIX systems.
Even though there were different versions of UNIX available, the ver­
sions of the C compiler maintained a large degree of uniformity. The
version of C running under UNIX is known as PCC (Portable C Compil­
er) . Like the K&R standard, PCC also became a de facto standard.

With·the emergence of personal computers (PCs) and the growing popu­
larity of C, however, the K&R and PCC standards were no longer satis­
factory. Suddenly, C compilers were being written to run on new ma­
chines and under different operating systems. It became difficult or im­
possible to adhere to the original standards. Another problem was that C
was such a small language that compiler developers felt a strong tempta­
tion to add their own favorite constructs. Before long, there were many
variants of C, each differing in little ways.

One of C's original strengths had been its portability, but over the years it
lost this advantage. Programs written for one compiler could not be guar­
anteed to compile correctly on another computer. Eventually, the
American National Standards Institute (ANSI) formed a subcommittee
to define an official version of the C language.

1.3 ANSI Standard
The American National Standards Institute (ANSI) is the foremost stan­
dards organization in the United States. ANSI is divided into a number
of Committees that have responsibility for approving standards that cover
a particular technical area. The X3 Committee, chartered in 1961, is re­
sponsible for Computer and Information Processing Standards.

In February of 1983, James Brodie of Motorola Corporation applied to
the X3 Committee to draft a C standard. ANSI approved the applica­
tion, and in March the X3J11 Technical Committee of ANSI was
formed. X3Jll is composed of representatives from all the major C

www.manaraa.com

Introduction 7

compiler developers, as well as representatives from several companies
that program their applications in C. In the summer of 1983, the com­
mittee met for the first time, and they have been meeting four times a
year since then. The final version of the C Standard is expected to be
approved by ANSI some time in 1987. Already, however, most of the
major decisions have been made and very few changes are anticipated.

The proposed ANSI Standard for the C language is specified in a docu­
ment entitled Draft Proposed American National Standard for Informa­
tion Systems - Programming Language C. In addition to this specifica­
tion, there is a Rationale Document, which clearly explains the goals of
the X3Jll Committee:

The Committee's overall goal was to develop a clear, consistent,
and unambiguous Standard for the C programming language which
codifies the common, existing definition of C and which promotes
the portability of user programs across C language environments ...

The work of the Committee was in large part a balancing act. The
Committee has tried to improve portability while retaining the defi­
nition of certain features of C as machine-dependent. The Com­
mittee worked to incorporate new ideas but did not wish to disrupt
the basic structure and fabric of the language. The Committee
tried to develop a clear and consistent language while trying not to
break existing programs. All of the goals were important and each
decision was weighed in the light of sometimes contradictory re­
quirements in an attempt to reach a workable compromise.

The future of the ANSI Standard will be determined by C users. If they
demand a Standard C compiler, compiler developers will rush to satisfy
them. The members of the X3Jll Committee-which includes represen­
tatives from IBM, DEC, Microsoft, and AT&T, among others-clearly
expect the ANSI Standard to become the standard. Many of these com­
panies are already developing ANSI compilers. Most C programs will be
acceptable to both the old and new versions of C. Still, C programmers
would be wise to make sure that their code conforms to ANSI specifica­
tions.

To obtain copies of the ANSI Standard and Rationale Document, send
your request to:

American National Standards Institute
1430 Broadway
New York, NY 10018

www.manaraa.com

8 Chapter 1

1.4 Nature of C
The C programming language has acquired the reputation (not entirely
undeserved) for being a mysterious and messy language that promotes
bad programming habits. Part of the problem is that C gives special
meanings to many punctuation characters, such as asterisks, plus signs,
braces, and angle brackets. Once a programmer has learned the C lan­
guage, these symbols look quite commonplace, but there is no denying
that a typical C program can be intimidating to the uninitiated.

The other, more serious, complaint concerns th--e- relative dearth of rules.
Other programming languages, such as Pascal, have very strict rules to
protect programmers from making accidental blunders. It is assumed in
Pascal, for instance, that if a programmer attempts to assign a floating­
point number (same as a real number) to a variable that is supposed to
hold an integer, it is a mistake, and the compiler issues an error message.
In C, the compiler quietly converts the floating-point value to an integer.

The C language was designed for experienced programmers. The compil­
er, therefore, assumes little about what the programmer does or does not
intend to do. This can be summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual
code. In many instances, this freedom allows programmers to write use­
ful programs that would be difficult to write in other languages. However,
the freedom can be, and is, abused by inexperienced programmers who
delight in writing needlessly tricky code. C is a powerful language, but it
requires self-restraint and discipline.

One of our main points made repeatedly throughout this book is that
there is a huge difference between good programs and working programs.
A good program not only works, but is easy to read and maintain. De­
spite what some people claim, it is very possible to write good programs in
C. Unfortunately, many C programmers are content to write programs
that merely work.

www.manaraa.com

Chapter 2

C Essentials

"A little learning is a dangerous thing." -
Alexander Pope, An Essay on Criticism

One of the hardest parts about learning a programming language is that
everything is interrelated. It often seems impossible to understand any­
thing before you know everything. In this chapter, we describe the C es­
sentials - what you need to know to write your first programs. To avoid
getting bogged down in details, we gloss over some of the intricacies of
the C language in this chapter. In later chapters, we provide a more thor­
ough discussion of the topics introduced in this chapter.

2.1 Program Development
Program development consists of a number of steps, as shown in Figure
2-1. Some of the latter steps vary from one computing environment to
another. In this chapter, we describe these latter development stages in
general terms. (Box 2-1 describes how to develop a program in a UNIX
environment.) You should read the system documentation for your com­
puter to find out how to compile and link programs in your particular en­
vironment.

www.manaraa.com

10 Chapter 2

I Defina the problem I ..
.. Design an algorithm to .,., solve the problem

• I Edit source files I Redefine ~· I

problem ,.
A " I Compile source files ..

I link Object flies I ..
Test and debug executable
program

Figure 2-1. Stages of Program Development.

The first step to developing a program is to clearly define the problem
and design an algorithm to solve it. An algorithm is a well-defined set of
rules to solve a particular problem in a finite number of steps . The art of
programming consists of designing or choosing algorithms and expressing
them in a programming language. This stage of the development process
is extremely important, though it is often given short shrift by beginners
and experts alike. We'll have more to say about the design stage in later
sections of the book. For now, we are concerned with the later stages of
software development that occur after you have defined the problem and
designed an algorithm.

As shown in Figure 2-2, there are three general steps:

1. Edit each source file.

2. Compile each source file to produce an object file.

3. Link the object files together to produce an executable program.

Note that the source and object code can be spread out in multiple files,
but the executable code for a program generally resides in a single file.
Box 2-1 briefly describes how these steps appear in a UNIX environ­
ment.

www.manaraa.com

C Essentials

source
file

I
compile

object
file

source
file

I
compile

object
file

Executable
Code

source
file

I
compile

object
file

source
file

I
compile

object
file

Runtime
Library

Figure 2-2. Compiling and Linking. Source files must be compiled
to produce object files . The separate object files are
then linked together to form the executable file.

2.1.1 Compiling Source Files

11

By the end of the design stage, you should have defined a set of routines,
called functions, each of which solves a small piece of the larger program­
ming problem. The next step is to actually write the code for each func­
tion. This is usually done by creating and editing C language text files.
These files are called source files.

www.manaraa.com

12 Chapter 2

Box 2-1: Compiling and Linking In a UNIX
Environment

In UNIX environments, you edit the SOUTce files with a text editor,
such as ed or vi. To compile the program, you invoke the compiler
with the cc command, followed by the name of the source file.
For example:

~i~ cc test. c

The dollar sign is a command prompt that signifies that the operat­
ing system is waiting for user input. Different operating systems
use different characters for the command prompt. Throughout
this book, we shade characters emitted by the computer to differ­
entiate them from characters that you enter from the keyboard.

UNIX requires the names of C source files to end with a .c exten­
sion. If your source file contains errors, the compiler prints out
the error messages, but does not create an object file. If the pro­
gram is error-free, the compiler produces an object file with the
same name as the source file except that it has a .0 extension in­
stead of a .c extension. Under UNIX, the cc command also in­
vokes the linker and produces an executable file called a.out by
default. You can override this default filename by using the -0 op­
tion. For example,

~ cc -0 test test.c

forces the executable file to be named test. If the cc command
contains only one source filename, then the object file is deleted.
However, you can specify multiple source files in the same compi­
lation command. The UNIX cc program compiles each one of
them separately, creating an object file for each, and then it links
all the object files together to create an executable file. For in­
stance, the command

x*"·
t~ cc -0 test modulel.c module2.c module3.c

produces fOUT files-three object files called module 1 .0, mod­
ule2.o, and module3.o, and an executable file called test. To run
the program, you enter the executable filename at the command
prompt:

til test

The loading stage is handled automatically when you execute a
program.

www.manaraa.com

C Essentials 13

The task of the compiler i,s to translate source code into machine code.
How the compiler does this is beyond the scope of this book. Suffice it to
say that the compiler is itself a program (or group of programs) that must
be executed. The compiler's input is source code and its output is object
code. Object code represents an intermediary step between the source
code and the final executable code. The final steps are handled by two
additional utilities called the linker (or binder) and the loader.

2.1.2 Linking Object Files
After creating object files by invoking the compiler, you would combine
them into a single file by invoking the linker. In addition to combining
object files, the linker also links in functions from the runtime library if
necessary. The result of the linking stage is an executable program.

Although linking is handled automatically by some operating systems
(e.g., UNIX), the linker is actually a separate program. In some environ­
ments it must be invoked separately.

2.1.3 Loading Executable Files
There is one additional step that is often ignored because it is usually
handled automatically by the operating system. This is the loading stage,
in which the executable program is loaded into the computer's memory.
Most operating systems automatically load a program when you type the
name of its executable file. A few operating systems, however, require
you to explicitly run a loader program to get your program into memory.

2.1.4 The Runtime Library
One of the reasons C is such a small language is that it defers many op­
erations to a large runtime library. The runtime library is a collection of
object files. Each file contains the machine instructions for a function
that performs one of a wide variety of services. The functions are divided
into groups, such as I/O (Input and Output), memory management,
mathematical operations, and string manipulation. For each group there
is a source file, called a header file, that contains information you need
to use these functions. By convention, the names for header files end
with a .h extension. For example, the standard group of I/O functions
has an associated header file called stdio.h.

To include a header file in a program, you must insert the following state­
ment in your source file:

#include <filename>

www.manaraa.com

14 Chapter 2

For example, one of the I/O runtime routines, called printf() , enables
you to display data on your terminal. To use this function, you must en­
ter the following line in your source file:

#include <stdio.h>

Usually, this would be one of the first lines in your source file. We de­
scribe the #include directive and other preprocessor commands in more
detail later in this chapter.

2.2 Functions
The most important concept underlying high-level languages is the notion
of functions. In other languages, they may be called subroutines or pro­
cedures, but the idea is the same. A C function is a collection of C lan­
guage operations. A function usually performs an operation that is more
complex than any of the operations built into the C language. At the
same time, a function should not be so complex that it is difficult to un­
derstand.

Typically, programs are developed with layers of functions. The lower­
level functions perform the simplest operations, and higher-level func­
tions are created by combining lower-level functions. The following, for
instance, is a low-level function that calculates the square of a number.
This is a simple function, yet it performs an operation that is not built into
the C language.

int square (num)
int num;
{

}

int answer;

answer = num * num;
return answer;

As shown in Figure 2-3, software engineering rests on the concept of hi­
erarchies, building complex structures from simple components.

www.manaraa.com

C Essentials

Machine Instructions: At the lowest level,

every program consists of primitive

machine instructions.

Language Statements: High-level languages

consist of statements that perform one or

more machine instructions.

Functions: Functions consist of

groups of language statements.

Programs: Programs

consist of groups

of functions.

~
W

15

Figure 2-3 . Software Hierarchy. Software engineering is based on a
hierarchy of programming components .

www.manaraa.com

16 Chapter 2

You can think of function names as abbreviations for long, possibly com­
plicated sets of commands. You need only define a function once, but
you can invoke (or call) it any number of times. This means that any set
of operations that occurs more than once is a candidate for becoming a
function. Functions are more than just a shorthand, however. They
enable you to abstract information. This means that a complex
operation can be constructed out of simpler operations. This yields two
benefits:

1) Ease of change and enhanced reliability. If you need to change
program behavior, either to fix a problem or to adapt to new re­
quirements, the change need only be made in one place because
there is only one copy of each function. Remember, needless re­
dundancy is the hobgoblin of software engineers!

2) Better readability. With the low-level details of an algorithm hid­
den away in functions, the algorithm is easier to read. In fact,
even if a set of operations is used only once in a program, it is
sometimes worthwhile to make it a function if it aids readability.

A function is like a specialized machine that accepts data as input, proc­
esses it in a defined manner, and hands back the results. For example,
the square() function takes a number as input and returns the square of
the number as the result. Whenever we want to know the square of a
number, we "call" the square function.

The key to using functions successfully is to make them perform small
pieces of a larger problem. Ideally, however, each piece should be gen­
eral enough so that it can be used in other programs as well. For exam­
ple, suppose you want to write a program that counts the number of
words in a file. The best way to approach this programming problem is
through a method called top-down design and stepwise refinement. The
basic idea behind this methodology is to start with a description of the
task in your natural language and then break it into smaller, more precise
tasks. Then, if necessary, divide those smaller tasks into still smaller op­
erations until you arrive at a group of low-level functions (called primi­
tives) that can be employed to solve the original problem.

As an example, let's start with the task:

Count the number of words in a file

www.manaraa.com

C Essentials 17

As the first step in the refinement process, we can divide this step into
the following steps:

open the file;
while there are more words in the file

read a word;
increment the word count;

print the word count;
close the file.

Finally, we can refine the steps even further by expanding read a word:

open the file;
while there are more words in the file

read characters until you get a non-space character;
read characters until you get a space character;
increment the word count;

print the word count;
close the file.

Before you actually write the code for a program, you should write down
the steps as we have. This outline of the program is called pseudo-code
because the steps are written in a shorthand language that is somewhere
between your natural language and the programming language. Once
you've written the pseudo-code, it is usually fairly easy to translate it into
a high-level language.

Many of the steps shown in the pseudo-code can be broken down even
further. However, these steps are sufficiently low-level because there are
runtime functions to perform them. For example, there is an fopen 0
function that opens a file, afgetcO function that reads a character from a
file, a printfO function that prints text, and an fclose 0 function that
closes a file. Of course, you won't always be so lucky as to have all the
primitives available. Sometimes you'll need to write your own. However,
the runtime library does contain a powerful set of primitives, so you
should always check it before writing your own function. Appendix A
describes the functions in the runtime library.

One point worth stressing is that functions should be small, yet general.
The fopen 0 function, for example, is written so that you can pass it any
filename and it will open the corresponding file. In fact, fopenO is even
more general, allowing you to specify whether the file contains text or nu­
meric data, and whether it is to be opened for read or write access. This
is a good illustration of the principle that the best functions perform small
autonomous tasks, but are written so that the tasks can be easily modified
by changing the input.

www.manaraa.com

18 Chapter 2

As you develop a program, dividing it into functions, you are likely to
learn more about the particular problem you're trying to solve. Don't be
discouraged, therefore, if you find it hard to go from the original problem
statement to the C language source code. Like everything, it gets easier
with practice.

2.3 Anatomy of a C Function
Since functions are the building blocks of all C programs, they are a good
place to start describing the C language. The general layout is shown in
Figure 2-4, although some of the elements are optional. The required
parts are the function name, the parentheses following the function
name, and the left and right braces, which denote the beginning and the
end of the [unction body. The other elements are optional.

arguments

Figure 2-4. Elements of a Function. The shaded components are
optional.

www.manaraa.com

C Essentials 19

The function shown in Figure 2-5 is the square() function that we intro­
duced earlier. The figure identifies all of the function's components.

We'll describe each line in turn. The first line has three parts. The first
word, int, is a reserved keyword that stands for" integer." It signifies that
the function is going to return an integer value. There are about thirty
keywords in C, each of which has a language-defined meaning. Key­
words are always Written in lowercase letters and are reserved by the C
language, which means that you may not use them as names for variables.
(The complete list of keywords appears in Table 2-2.)

The second word, square, is the name of the function itself. This is what
you use to call the function . We could have named the function any­
thing, but it is best to use names that remind you of what the function ac­
tually does. The parentheses following the name of the function indicate
that square is, in fact, a function and not some other type of variable.
num is the name of the argument.

,-------------- function type

1
,...------------ function name

1 t r---------- argument name

int square (num
int numj .. -+----------- argument declaration
{

int answer; --+------ variable declaration

answer - num*num;
-+-+------ C statements return answer;

L..:....} ________ --' -41----- function body

Figure 2-5. Anatomy of the squareO Function.

Arguments represent data that are passed from the calling function to the
function being called . On the calling side, they are known as actual ar­
guments; on the called side, they are referred to as formal arguments.
As with naming functions, we could give the argument any name we
want, but num seems sufficiently descriptive.

Functions can take any number of arguments . For example, a function
that computes x to the y power would take two arguments, separated by a
comma (the spaces between the parentheses and the arguments are op­
tional) :

int power(x, Y)

www.manaraa.com

20 Chapter 2

The second line of the square () function is an argument declaration.
Again, we use the keyword int, which signifies that the input is going to
be an integer. The semicolon ending the line is a punctuation mark indi­
cating the end of a statement or declaration.

The function body contains all of the executable statements. This is
where calculations are actually performed. The function body must begin
with a left brace and end with a right brace.

The line following the left brace is a declaration of the integer variable
called answer. Program variables are names for data objects whose val­
ues can be used or changed. The declaration of answer follows the same
format as the declaration of num, but it lies within the function body.
This indicates that it is not an argument to the function. Rather, it is a
variable that the function is going to use to temporarily hold a value.
Once the function finishes, answer becomes inaccessible. All variables
declared within a function body must be declared immediately after a left
brace.

The next line is the first executable statement-that is, the first statement
that actually performs a computation. It is called an assignment state­
ment because it assigns the value on the right-hand of the equal sign to
the variable on the left-hand side. You would read it as: "Assign the
value of num times num to answer." The symbol * is an operator that
represents multiplication and "=" is an operator that represents assign­
ment. Assignment is the process of storing the value of the expression on
the right-hand side of the equal sign in the data object represented by the
left-hand side of the equal sign.

The next statement is a return statement, which causes the function to
return to its caller. The return statement may optionally return a value
from the function, in this case answer.

Before proceeding, we need to take a closer look at some of these func­
tion components-particularly variables, variable names, constants, ex­
pressions, and assignment statements.

www.manaraa.com

C Essentials 21

2.3.1 Variables and Constants
The statement,

j = 5+10;

seems straightforward enough. It means "add the values 5 and 10 and as­
sign the result to a variable called j." But there are actually a number of
underlying assumptions that give this statement meaning. It seems intelli­
gible to us only because we are accustomed to de-aling with the symbols
involved. We know that "5" and "10" are integer values, that "+" and
"=" are operators, and that j is a variable whose value can be changed.
To the computer, however, all of these symbols are merely different com­
binations of onloff bits. To make sense out of the expression, a com­
puter must be told at some point what each of these symbols means. This
is one of the functions of the compiler. The compiler knows that when it
sees a combination of digits 0 through 9, it is looking at an integer value.
If there is a period within the string of digits (i. e., 3. 141), then it is look­
ing at a floating-point number. These are just two out of a multitude of
rules that the compiler uses to make sense out of a program. This stage of
the compiler, where such rules are uses to interpret a source file, is called
the lexical analysis stage.

One of the compiler's most basic tasks during the lexical analysis stage is
to differentiate between constants and variables. As their names imply, a
constant is a value that never changes, whereas a variable can represent
different values. Consider again the statement:

j = 5+10;

The symbols "5" and "10" are constants because they have the same
value no matter where they appear in a program. The symbol j, on the
other hand, is the name of a variable that may be able to represent differ­
ent values. After this statement, j will have the value 15, but we could
make another assignment that would give it a different value. A variable
achieves its "variableness" by representing a location, or address, in
computer memory.

The variable j is located at some address, say 2486. So the assignment
statement translates into "add the constants 5 and 10, and then store the
result at location 2486" (see Figure 2-6).

The statement,

j = j - 2;

says "fetch the contents of address 2486, subtract the constant 2 from it,
and store the result at 2486." In this case the value of j is first read and
then a new value is written. Box 2-2 describes a useful analogy for think­
ing about computer memory.

www.manaraa.com

22 Chapter 2

Memory

Variable Address Contents

- 4 bytes-

2482
...-------11

i)r: 15 2486
t-------Ir

2490

Figure 2-6. Memory after j = 5 + 10. (We assume that j
requires four bytes of storage, as shown by the
addresses.)

2.3.2 Names

In the C language, you can name just about anything: variables, con­
stants, functions, and even locations in a program. The rules for compos­
ing names are the same regardless of what you are naming. Names may
contain letters, numbers, and the underscore character _, but must start
with a letter or underscore. Names beginning with an underscore, how­
ever, are generally reserved for internal system variables.

The C language is case sensitive which means that it differentiates be­
tween lowercase and uppercase letters . So the names,

VaR
var
VAR

are all different. The advantage of case sensitivity is that you have more
names to choose from, but it also means that you should follow strict
naming conventions to ensure readability and maintainability.

A name cannot be the same as one of the reserved keywords (see Table
2-2). Also, you should avoid using names that are used by the runtime
library unless you really want to create your own version of the runtime
function. See Appendix C for a complete list of reserved names. Table
2-1 shows some legal and illegal names.

www.manaraa.com

C Essentials

j
j5

Legal Names

system name
sesquipedalial name
UpPeR_aNd_LoWeR_CASE_nAmE

Illegal Names

23

5j
$name
int
bad%#*@name

Names may not begin with a digit.
Names may not contain a dollar sign.
int is a reserved keyword.
Names may not contain any special
character except an underscore.

Table 2-1. Legal and Illegal Variable Names

There is no C-defined limit to the length of a name, although each com­
piler sets its own limit. The ANSI Standard requires compilers to support
names of at least 31 characters. Some older compilers impose an
8-character limit.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 2-2. Reserved C Keywords. You may not use these as
variable names.

There is some strategy involved in choosing names that make your pro­
gram easier to understand. When, for instance, do you use uppercase,
when do you use lowercase, and when do you use the underscore charac­
ters? Also, when is a single-letter name like i or m suitable and when
should a name be longer and more meaningful? These are questions that

www.manaraa.com

24 Chapter 2

we'll address as we proceed. As a general rule, you should use lowercase
letters for variable names. Another important and obvious rule-but one
that is often overlooked-is to choose names that reflect their use. For
instance, a variable that is used to store the fractional part of a floating­
point value could be called !ractionalyart.

Box 2-2: The Mailbox Analogy

A good way to think about memory is as a series of mailboxes.
Each box has a unique address. A thousand boxes would have ad­
dresses from 0 through 999 (in C, as in most computers, address­
ing begins at zero instead of one). Inside each box is a slip of pa­
per with a number on it . To store the value 5 in box 200, you
would open the box, erase whatever number is on the slip of pa­
per, and write a 5 on it. To see what is in box 350, you would
open the box and react the value on the slip of paper, and then re­
turn the slip unchanged. The only restrictions on the mailboxes
are that each one can hold only one slip of paper, or value, at a
time.

It is a small conceptual jump from the mailbox example to com­
puter memory. The processes are identical with one small addition
in the computer model. In a computer, it sometimes takes more
than one mailbox to store a value. A large integer, for example,
might require four bytes, or mailboxes. In this case, the compiler
would store the value by opening four consecutive mailboxes and
writing a portion of the number in each. To read the value, it
would again need to open all four mailboxes.

A computer language lets you give a mailbox a name so that you
need not remember its numeric address . Whenever you declare a
variable, the compiler finds an unused mailbox and binds the ad­
dress of the unused box to the variable name. Then when you use
the variable name in an expression, the compiler knows what box
to open.

www.manaraa.com

C Essentials 25

2.3.3 Expressions
An expression is any combination of objects that denotes the computa­
tion of a value. For example, all of the following are expressions:

5 A constant
num A variable
5 + num A constant plus a variable
5 + num *6 A constant plus a variable times a

constant
fO A function call
fO /4 A function call, whose result is

divided by a constant

The building blocks of expressions include variables, constants, and func­
tion calls. There are additional building blocks, but these are enough to
get started. The building blocks by themselves are expressions, but they
can also be combined by operators to form more complex expressions.
There are literally dozens of operators, but the following are some of the
most basic ones:

+

*
/

Addition
Subtraction
Multiplication
Division

Chapter 5 describes operators and expressions in detail.

2.3.4 Assignment Statements
The square () function contains one example of an assignment statement:

answer = num * num;

The general format of an assignment statement is shown in Figure 2-7.
The expression on the right-hand side of the assignment operator, some­
times called an rvalue, is a value. The left-hand side of an assignment
statement, called an lvalue, is a place that can hold a value. Lvalues
must represent memory locations where data can be stored. Originally,
the term "lvalue" was coined to define the expression on the left-hand
side of an assignment expression. However, this is something of a misno­
mer because not every lvalue may be used on the left-hand side of an as­
signment expression-some lvalues refer to constants whose values cannot
be changed. Still, the distinction between lvalues and rvalues is a useful
one. For example, it wouldn't make any sense to turn the previous as­
signment statement around,

num * num = answer;

www.manaraa.com

26 Chapter 2

because the expression num • num is not an Ivalue-it does not represent
a memory location.

Ivalue ~ rvalue I-I--.... ~O

Figure 2-7. Syntax of an Assignment Statement.

2.4 Formatting Source Files
One aspect of C programming that can be confusing to beginners is that
newlines in the source code are treated exactly like spaces (except when
they appear in a character constant or string literal). Newlines are special
characters that cause the cursor to jump to the beginning of the next line .
Whenever you press the RETURN key on your keyboard, a newline is
generated. Because C ignores newlines, we could have written the
square() function as:

int square (num) int num; { int answer;
answer = num*num; return answer; }

While this is equally readable to the computer, it is less readable to hu­
mans, and is therefore considered poor programming style. The compiler
doesn't care how many spaces or newlines you insert between program
components. For example, the following is also legal:

int
square (num)

int num
{ int
answer

answer num

* num;
return answer; }

Again, this is an example of poor programming style. Note, in addition,
that you cannot insert spaces within names or keywords.

Like other programming languages, the C language requires a conscious
effort on the programmer's part to use consistent and readable conven­
tions. Our own style, exhibited in the examples throughout the book,
represents our personal preference, but is by no means the only good way
to write programs. The main points to keep in mind are readability and
consistency.

www.manaraa.com

C Essentials 27

2.4.1 Comments
A comment is text that you include in a source file to explain what the
code is doing. Comments are for human readers-the compiler ignores
them. Commenting programs is an important, though often-neglected,
aspect of software engineering. The C language allows you to enter com­
ments by inserting text between the symbols 1* and * I. In the following
example, the asterisks that begin each line are included to aid readabil­
ity-only the first and last ones are required.

/* square()
* Author: P. Margolis
* Initial coding: 3/87
* Purpose:
* This function returns the square of its
* argument.
*/

int square (num)
int num;
{

}

int answer;

answer = num*num; /*Does not check for overflow */
return answer;

The compiler ignores whatever characters appear within the comment de­
limiters. Note that a comment can span multiple lines. Formatting com­
ments so they are readable but do not interrupt the flow of the program is
difficult in all languages, including C. One method is to devote entire
lines to comments. Another is to put comments to the right of the code.
You should use this second method only if the comment can fit on a sin­
gle line. We use both formats in examples throughout the book. Nested
comments are not allowed in C, as described in Box 2-3.

A more important issue is what to comment. In general, you should
comment anything that is not obvious. This includes complex expres­
sions, data structures, and the purpose of functions. In fact, all functions
should contain a header comment that describes what the function does.
It is also useful to comment changes to programs so that you can keep
track of modifications. This is particularly important if you are working
on a small piece of a larger project. However, comments without infor­
mation content can make a program difficult to read. Do not comment
the obvious. The following, for example, is poor commenting style:

j = j + 1; /* increment j */

www.manaraa.com

28 Chapter 2

Also, lengthy comments cannot compensate for unreadable code. Com­
menting is largely a stylistic issue for which it is difficult to impose hard­
and-fast rules. The best way to learn is by studying the examples in this
book and other code written by experienced programmers .

Box 2-3: Bug Alert - No Nested Comments

You cannot place comments within comments to form nested com­
ments. For example,

/* This is an outer comment
* /* This is an attempted inner comment */

*
* This will be interpreted as code.
*/

C identifies the beginning of a comment by the character sequence
/.. It then strips all characters up to, and including, the end com­
ment sequence */. What's left gets passed to the compiler to be
further processed. In the example above, therefore, the compiler
will delete everything up to the first -/ sequence, but pass the rest
to the compiler. So the compiler will attempt to process:

*
• This will be interpreted as code.
*/

Not recognizing these lines as valid C statements. the compiler will
issue an error message.

2.5 The main() Function
Having written and compiled the function squareO, we still can't quite
execute it. Every executable program must contain a special function
called mainO, which is where program execution begins. The mainO
function can call other functions. For example, to invoke squareO, you
could write:

mainO
{

extern int square();
int solution;

solution = square (5);
exit (0);

www.manaraa.com

C Essentials 29

This assigns the square of 5 to the variable named solution. The rules
governing a main 0 function are the same as the rules for other functions.
Note, however, that we don't identify the function's data type and we
don't declare any arguments. This is a convention that we adopt for
now. mainO actually does return a value and it takes two arguments.
We defer a discussion of these aspects until Chapter 9.

The exit 0 function is a runtime library routine that causes a program to
end, returning control to the operating system. If the argument to exitO
is zero, it means that the program is ending normally without errors.
Non-zero arguments indicate abnormal termination of the program.
Calling exitO from a mainO function is exactly the same as executing a
return statement. That is,

exi t (0);

is the same as:

return 0;

You should include either exitO or return in every mainO function.
(For ANSI-conforming compilers, you need to include the stdlib.h
header file wherever you call the exitO function.)

We declare two names in mainO. The first is the function squareO,
which we are going to call. The special keyword extern indicates that
squareO is defined elsewhere, possibly in another source file. The other
variable, solution, is an integer that we use to store the value returned by
squareO·

The next statement is the one that actually invokes the squareO function.
Note that it is an assignment statement, with the right-hand side of the
statement being the function invocation. The argument 5 is placed in pa­
rentheses to indicate that it is the value being passed as an actual argu­
ment to squareO. You will recall that square()'s name for this passed ar­
gument is num. The squareO function then computes the square of num
and returns it. The return value gets assigned to solution in the main 0
function.

We now have a working program, but it is not particularly useful for a
couple of reasons. One problem with this program is that there is no way
to see the answer. In this simple case, it's obvious that the variable solu­
tion gets the value 25, but suppose we pass square 0 a larger value whose
square we don't already know. We need to add a statement that prints
out the value of solution so we can see it. There are a number of runtime
routines that can display data on your terminal, but the most versatile is
printfO. Adding printf() to our program gives us the program shown on
the next page.

www.manaraa.com

30 Chapter 2

#include <stdio.h> /* Header file of printf() */

main()
{

}

extern int square();
int solution;

solution = square(27);
printf("The square of 27 is %d\n" , solution);
exit (0);

Note that we need to include the header file stdio.h because printf() is an
I/O function. We describe the printfO function in more detail later in this
chapter. For now, all you need to know is that %d is a special code that
indicates to the printf() function that the argument to be printed is a
decimal integer. The actual output will be the value stored in solution.
The \n sequence is a special sequence that forces printf() to output a
newline character, causing the cursor to move to the beginning of the
next line.

Assuming main() is stored in a source file called getsquare.c, and
square () is located in a file called square . c, you could compile and link
this program with the following command (in a UNIX environment):

,.:.:<-.:: fJ.l cc -0 getsquare getsquare.c square.c

To run the program, type getsquare at the prompt:

f:j~ getsquare
The square 9f 27 is 729

ili!.f.i

The getsquare program still isn't very useful, how~ver, since it can only
print the square of one number. To find out the squares of other num­
bers, we would have to edit the source file, change the argument to
square() , and then re-compile, re-link, and re-execute the program. It
would be better if we could dynamically specify which number we want to
square while getsquare is running. To do this, we need to use another
runtime routine called scanf(). scanf() is the mirror function to printf()·
Whereas printf() outputs the value of a variable, scanf() reads data en­
tered from the keyboard and assigns them to variables.

www.manaraa.com

C Essentials

Adding scanf() to our program, we get:

#include <stdio.h>

main()
{

extern int square();
int solution;
int input_val;

printf("Enter an integer value: ");
scanf ("%d", &input_val);
solution = square(input_val);
printf("The square of %d is %d\n" , input_val,

solution);
exit (0);

31

Note that we declare another variable, input_val, to store the value en­
tered from the keyboard. We then pass this value as the argument to
square(). The expression,

&input_val

means "the address of input_val". We pass the address of input_val so
that scanf() can store a value in it. The & symbol is an important C op­
erator that we discuss in more detail in Chapter 3. A typical execution of
getsquare would be:

r-:-'-:::::
r$':~ getsquare
Enter an integer value: 8
The square of 8 is 64

:[$1

We can execute this program any number of times, giving it different in­
put with each execution.

2.6 The printf() Function
The printf() function can take any number of arguments. The first argu­
ment, however, is special. It is called the format string and it specifies
how many data arguments are to follow and how they are to be format­
ted. The format string is enclosed in double quotes, and may contain
text and format specifiers. A format specifier is a special character se­
quence that begins with a percent sign (%) and indicates how to write a
single data item.

www.manaraa.com

32

For example, in the statement,

printf ("The value of num is %d", num);

there are two arguments. The first is the format string:

"The value of num is %d"

Chapter 2

The second is the data item, in this case a variable called num. The for­
mat string can be broken down further into two parts: a text string,

The value of num is

and a format specifier,

The %d specifier indicates that the first data item, num, is a decimal inte­
ger. There are other specifiers for other types of data. Following is a
partial list:

%c
%f
%s
%0
%x

Character data item
Floating-point data item
Null-terminated character array (string)
Octal integer
Hexadecimal integer

We describe these specifiers and others in later chapters. In addition to
specifying the type of data to be printed, you can also specify such attrib­
utes as left justification, right justification, padding characters, and
whether a plus sign should be printed for positive numbers. These details
are described in Appendix A.

For now, the only additional thing you need to know about printf() is
that the format string can contain any number of format specifiers, but
there must be a data argument for each one. For example:

l 1
printf("Print three values: %d %d %d", numl, num2, num3);

Note that the first format specifier corresponds to the first data item, the
second specifier to the second data item, and so on. We separate each
specifier by a space so that a space will be printed before each number.
Otherwise the numbers would be printed one after the other without any
separation.

www.manaraa.com

C Essentials 33

The data items can be expressions, such as nurn· nurn:

printf("The square of %d is %d\n", num, num*num);

The backslash (\) followed by n forms a special symbol called an escape
sequence. When escape sequences are sent to an output device, such as
a terminal, they are interpreted as signals that control the format of dis­
play. The \n escape sequence forces the system to output a newline.
There are other escape sequences, which we describe in the next chap­
ter.

2.6.1 Continuation Character
To span a quoted string over more than one line, you must use the con­
tinuation character, which is a backslash. For example, here's a pro­
gram that uses the continuation character to print a long string:

MainO
{

printf("This string is too long to fit on one \
line, so I need to use the continuation \
character.");
}

Prior to the ANSI Standard, the continuation character could only be
used to continue character strings. The Standard extended this notion so
that you can now stretch variable names over multiple lines. For the sake
of readability, however, you should use the continuation character spar­
ingly. (The ANSI Standard supports an alternative notation for extend­
ing strings across multiple lines. This feature is described in Chapter 6.)

2.7 The scanf() Function
The scan/() function is the mirror image of print/() . Instead of printing
data on the terminal, it reads data entered from the keyboard. The for­
mat of scan/() is similar to print/(). Like print/() , scan/() can take any
number of arguments, but the first argument is a format string. scan/()
also uses many of the same format specifiers. The specifier %d, for ex­
ample, indicates that the value to be read is an integer. The major differ­
ence between scan/() and print/() is that the data item arguments must
be lvalues and they must be preceded by the address 0/ operator &. For
example,

scanf ("%d", &num);

directs the system to read integer input from your terminal and store the
value in the variable called nurn. The ampersand is a special operator

www.manaraa.com

34 Chapter 2

that finds the address of a variable. We discuss it in more detail in the
next chapter.

The best way to learn how to use printf() and scanf() is to experiment
with them. The exercises at the end of this chapter suggest some pro­
grams you can write. You can also look at the complete descriptions of
printf() and scanf() in Appendix A.

2.8 The Preprocessor
You can think of the C preprocessor as a separate program that runs be­
fore the actual compiler. It is automatically executed when you compile
a program, so you don't need to explicitly invoke it. The preprocessor
has its own simple grammar and syntax that are only distantly related to
the C language syntax. All preprocessor directives begin with a pound
sign (#), which'must be the first non-space character on the line.

Unlike C statements, a preprocessor directive ends with a newline, not a
semicolon.

We discuss the preprocessor in detail in Chapter 10. For now, we need
only take a closer look at the #include facility, already mentioned in con­
nection with header files, and a new preprocessor command called #de­
fine.

2.8.1 The Include Facility
The preprocessor #include directive causes the compiler to read source
text from another file as well as the file it is currently compiling. In ef­
fect, this enables you to insert the contents of one file into another file
before compilation begins, although the orginal file is not actually altered.
This is especially useful when identical information is to be shared by
more than one source file. Rather than duplicating the information in
each file, you can place all the common information in a single file and
then include that file wherever necessary. Not only does this reduce the
amount of typing required, but it also makes program maintenance eas­
ier, since changes to the shared code need only be made in one place.
The #include command has two forms:

#include <filename>

and

#include "filename"

www.manaraa.com

C Essentials 35

If the filename is surrounded by angle brackets, the preprocessor looks in
a special place designated by the operating system. This is where all sys­
tem include files, such as the header files for the runtime library, are
kept. If the filename is surrounded by double quotes, the preprocessor
looks in the directory containing the source file. If it can't find the in­
clude file there, it searches for the file as if it had been enclosed in angle
brackets. By convention, the names of include files usually end with a .h
extension.

Consider what happens when the preprocessor encounters the command:

#include <stdio.h>

The preprocessor searches in the system-defined directory for a file
called stdio.h, and then replaces the #include command with the con­
tents of the file. We won't show you the entire stdio.h file because it's
long and complicated and varies from one compiler to another. But a
typical section of the file looks like the following:

/* Definitions of functions compiled separately
* that don't return int's.
*/

extern FILE *fopen(),*fdopen(),*freopen(), *popen(),
*tmpfile () ;

extern long ftell();
extern char *gets(), *fgets(), *ctermid(),

*cuserid(), *tempnam(), *tmpnam();

These are declarations of functions in the runtime library. As a simpler
example of how the #include directive works, suppose you have a file
called global_decs.h, which contains the following:

int global_counter;
char global_char;

Then in a source file, you use the #include directive:

#include "global_decs.h"
main()
{

}

www.manaraa.com

36 Chapter 2

When you compile the program, the preprocessor replaces the #include
directive with the contents of the specified file, so the source file looks
like:

int global_counter;
char global_char;
mainO
{

}

2.8.2 The #define Directive
Just as it is possible to associate a name with a memory location by de­
claring a variable, it is also possible to associate a name with a constant.
You do this by using a preprocessor directive called #define. For in­
stance,

#define NOTHING 0

binds the name "NOTHING" to the constant zero. The two symbols
"NOTHING" and "0" now mean the same thing to the compiler. The
statements,

j = 5 + 0;
j = 5 + NOTHING;

are exactly the same.

The rules for naming constants are the same as the rules for naming vari­
ables, but you must be careful not to confuse the two. For example, hav­
ing defined NOTHING as zero, you cannot write:

NOTHING = j+5;

any more than you can write:

o = j+5;

In both cases, the compiler should issue an error since you are attempting
to change the value of a constant. To avoid confusion between constants
and variables, it is a common practice to use all uppercase letters for con­
stant names and lowercase letters for variable names.

Naming constants has two important benefits. First, it enables you to give
a descriptive name to a nondescript number. For example:

#define MAX_PAGE_WIDTH 80

Now, in your program you can use MAX_PAGE_WIDTH, which means
something, instead of "80" which doesn't tell you much. Creative
naming of constants can make a program much easier to read.

www.manaraa.com

C Essentials 37

The other advantage of constant names is that they make a program eas­
ier to change. For example. the maximum page width parameter might
appear dozens of times in a large text formatting program. Suppose that
you want to change the maximum width from 80 to 70. If. instead of us­
ing a constant name. you used the constant 80. you will need to change
80 to 70 wherever it appears. and hope that you are changing the right
80·s. If you use a constant name. you need only change the definition.

#define MAX_PAGE_WIDTH 70

and recompile.

www.manaraa.com

38 Chapter 2

Exercises
1. Write a main() routine that prints Hello world.

2. Write a function that returns the cube of its argument. The func­
tion and argument should be declared as iots:

int cube(num)
int num;

3. Write a function called fourthyow() that returns the fourth
power of its argument. Use square() in your solution. Then
write a mainO function that calls fourthyowO.

4. Write a main() function that reads an integer from the terminal,
finds its cube by calling cube(), and prints the cube.

5. Link mainO and cube() together and run them.

6. In what ways does a computer program resemble a living organ­
ism? (See Douglas Hofstadter's Godel, Escher, Bach for an in­
depth discussion of computer and biological hierarchies.)

7. Write pseudo-code for a program that strips comments from a C
source file.

8. Which of the following names cannot be used to name variables?
Why are they illegal?

var VAR INT
int p.S p_s
p$s pHs qqqqqqqqqq
double p?s_2 ggg_234_456
double_var struct structure
12fff @f default
ok not_ok void
VOID Void voId

- 12 _bufp

9. The following function contains a number of bugs. Find the bugs
and fix them.

main(x)
{

scanf("How many bugs are in this programs?,
prob_count)

printf(This program has %d problems\n,
prob_count);

www.manaraa.com

Chapter 3

Scalar Data Types

What's in a name? That which we call a rose
By any other name would smell as sweet. -
Shakespeare, Romeo and Juliet

The ability to divide data into different types is one of the most important
features of modern programming languages. It enables you to work with
relatively complex objects instead of the more mundane objects that the
computer manipulates at its lowest level. You can deal with integers,
characters, and floating-point numbers, all of which are familiar entities.
At the bit and byte level, the computer may not understand these con­
cepts. It is up to the compiler, therefore, to make sure that the computer
handles bits and bytes in a way consistent with their data type. A data
type is really just an interpretation applied to a string of bits.

The C language offers a small but useful set of data types. There are
eight different types of integers and two types of floating-point objects
(three with the ANSI Standard). In addition, integer constants can be
written in decimal, octal or hexadecimal notation. These types-integers
and floating-points-are called arithmetic types. Together with pointers
and enumerated types, they are known as scalar types because all of the
values lie along a linear scale. That is, any scalar value is either less than,
equal to, or greater than any other scalar value.

www.manaraa.com

40 Chapter 3

In addition ~o scalar types, there are aggregate types, which are built by
combining one or more scalar types. Aggregate types, which include ar­
rays, structures, and unions, are useful for organizing logically-related
variables into physically-adjacent groups. There is also one type-void­
that is neither scalar nor aggregate. Figure 3-1 shows the logical hierar­
chy of C data types.

This chapter describes scalar variables and constants and the void type.
Chapters 6 and 8 describe aggregate types.

Figure 3-1. Hierarchy of C Data Types.

3.1 Declarations
Every variable must be declared before it is used. A declaration pro­
vides the compiler with information about how many bytes should be allo­
cated and how those bytes should be interpreted. To declare j as an in­
teger, you would write:

int j;

The word int is a reserved word that specifies a particular data type.
There are nine reserved words for scalar data types, as shown in Table
3-1.

www.manaraa.com

Scalar Data Types

char

int

float

double

enum

short

long

signed

unsigned

Table 3-1. Scalar Type Keywords.

41

The first five-char, int, float, double, and enum are basic types. The
others-long, short, signed, and unsigned-are qualifiers that modify a
basic type in some way. You can think of the basic types as nouns and
the qualifiers as adjectives.

As a shorthand, you can declare variables that have the same type in a
single declaration by separating the variable names with commas. You
could declare j and k with

int j,k;

which is the same as:

int j;
int k;

All the declarations in a block must appear before any executable state­
ments. The order in which they are declared, however, usually makes no
difference. For instance,

int j,k;
float X,Y,Z;

is functionally the same as:

float x;
int k;
int j;
float Z,Y;

It is usually a good idea to group declarations of the same type together
for easy reference.

All of our examples so far have used single-character variable names,
which seems to contradict our earlier advice about using meaningful
names. However, single-character names are acceptable in certain cir­
cumstances, particularly in short example programs and test programs.
To make them a bit more meaningful, there is a convention borrowed
from FORTRAN. The names i, j, k, m, and n are generally used for inte­
ger counters and temporary variables; x, y, and z are used for floating­
point temporary variables, and c is used for temporary character

www.manaraa.com

42 Chapter 3

variables. You should never use the single-character names 1 (el) or
o(oh), since they are easily confused with the digits 1 (one) and 0 (zero).

3.1.1 Declaring the Return Type of a Function
Just as you can declare the data type of a variable, you can also declare
the type of value returned by a function. The following declares foo 0 to
be a function that returns a value of type float.

float foo(arg)
int arg;
{

}

Unlike other variables, functions have a default return type (int) if you
do not explicitly give them a return type. For example,

foo()
{

}

declares a function /000 whose return type is into Many programmers
use this convention although we recommend that you explicitly enter the
int type to make the program more readable. Some programmers also
omit the return type for functions that return no value. This was accept­
able in older compilers that did not support another syntax for declaring
such functions. More modem C compilers, however, support the void
type, which allows you to explicitly declare that a function does not re­
turn a value. See Section 3-12 for more about void.

3.2 Different Types of Integers
Although int is the basic integer data type, it is also the least descriptive.
On all machines. an int is treated as an integer in that it cannot hold frac­
tional values. but it has different sizes on different machines. Some
compilers allocate four bytes for an int while others allocate only two
bytes. (Still others allocate three bytes or just one byte.) In addition, the
size of a byte is not constant. On most machines, a byte is eight bits, but
there are even exceptions to this rule.

The only requirements that the ANSI Standard makes is that a byte must
be at least eight bits long, and that ints must be at least 16 bits long and
must represent the "natural" size for the computer. By natural, they

www.manaraa.com

Scalar Data Types 43

mean the number of bits that the CPU usually handles in a single instruc­
tion. In our examples throughout the book, we assume that a byte is
eight bits, and that an int is four bytes.

If you don't care how many bytes are allocated, you can use into If the
size matters, however, you should use one of the size qualifiers, short or
long. On most machines, a short int is two bytes, and a long int is four
bytes. To declare j as a short int and k as a long int, you would write:

short int j;
long int k;

The compiler would allocate at least two bytes for j and at least four for k.
Note that since the number of bytes is different, the range of values is dif­
ferent, as shown in Table 3-2. If you need to store values less than
-32,768 or greater than 32,767, you should obviously use a long into

The compiler is smart enough to infer int even if you leave it out. You
could write, for example:

short j;
long k;

In the interest of brevity, most C programmers use this shorthand.

The number of bits used to represent an integer type determines the
range of values that can be stored in that type. Consider, for example, a
16-bit short into Each bit has a value of 2 to the power of n where n rep­
resents the position of the bit:

For instance, the decimal value 9 would be represented by setting bits 0
and 3:

o 0 0 0 0 0 0 0 0 0 0 0 1 001
23 + 2° 8 + 1 = 9

To represent negative numbers, most computers use two's complement
notation. In two's complement notation, the leftmost bit (called the most
significant bit because it represents the largest value) is a sign bit. If it is
set to one, the number is negative; if it's zero, the number is positive. To
negate a binary number, you must first complement all the bits (change
zeroes to ones, and ones to zeroes), and then add 1 to it. To get -9, for
instance, you would first complement the bits, giving you:

1 1 1 1 1 1 1 1 1 1 1 101 1 0

www.manaraa.com

44 Chapter 3

Then you would add one:

1 1 1 1 1 1 1 1 1 1 1 101 1 1

There is a less popular notation called one's complement, in which you
simply complement the bits to negate a number, without adding one.
While this notation may seem simpler, it has several drawbacks, one of
which is that there are two representations for zero:

o 0 0 0 0 0 0 0 0 000 0 0 0 0

and

1 1 1 1 1 III 1 1 1 1 1 1 1 1

In two's complement notation, there is only one representation for zero
because after complementing the bits, you add one, which zeroes all the
bits again.

One of the interesting, and valuable, features of two's complement nota­
tion is that -1 is represented by all bits being set to one. It also follows
that the largest positive number that can be represented occurs when all
but the sign bit are set. This value is 2(n-1)-1 where n is the number of
bits. The largest negative value is -2(n-1).

Table 3-2 shows sizes and ranges of integer types for our machine. (See
Appendix D for the minimum ranges that must be supported by an
ANSI-conforming C compiler.)

Size
Type (in bytes) Value Range

int 4 _2 31 to 231 -1
short int 2 _215 to 2 15 _1
long int 4 _2 31 to 231 -1

unsigned short int 2 o to 2 16 _1
unsigned long int 4 o to 232 -1

signed char 1 _27 to 27 -1
unsigned char 1 o to 2 8 -1

Table 3-2. Size and Range of Integer Types on Our Machine.

3.2.1 Unsigned Integers
There are a number of instances where a variable will only have to hold
non-negative values. For instance, variables that are used to count
things are often restricted to non-negative numbers. The C language

www.manaraa.com

Scalar Data Types 45

allows you to declare that a variable is non-negative only (or unsigned),
thereby doubling its positive range (the most significant bit will not be a
sign bit). A signed short int has a range of -32,767 to 32,767, whereas
an unsigned short int has a range of 0 to 65,535.

To declare an integer variable as being non-negative only, use the un­
signed qualifier, as in:

unsigned int k;
unsigned short m;
unsigned long n;

You can also use unsigned by itself, as in,

unsigned p;

which is the same as unsigned into The K&R standard supports only un­
signed ints - the other types of unsigned integers are ANSI extensions.
In addition, the ANSI Standard supports the signed qualifier, as de­
scribed in Box 3-1.

Box 3-1: ANSI Feature - signed Qualifier

The ANSI Standard recognizes a new keyword cillled signed,
which specifically makes a variable capable of holding negative as
well as non-negative values. In most cases, variables are signed
by default, so that the signed keyword is superfluous. The one
exception is with the char type which can be either signed or un­
signed by default, depending on the whims of the compiler devel­
opers. Most compilers use signed char as the default. Keep in
mind that the signed keyword is new, and may not be imple­
mented on your compiler.

3.2.2 Characters and Integers
Most programming languages make a distinction between numeric and
character data. The number" 5" is a number while the letter" A" is a
character. In reality, though, even characters are stored in the computer
as numbers. Every character has a unique numeric code . There are
various codes, two of the most common being ASCII, which stands for
American Standard Code for Information Interchange, and EBCDIC
(Extended Binary-Coded Decimal Interchange Code), which is what
IBM uses on its larger computers. Appendix G contains a full list of the
ASCII character set. The examples in this section assume an ASCII
code set since it is the most prevalent in C implementations. For most

www.manaraa.com

46 Chapter 3

codes, all character values lie within the range 0 through 255, which
means that a character can be represented in a single byte. (Certain lan­
guages, such as Kanji, require more than 256 character codes. To repre­
sent text in these languages, you must use shorts rather than chars.)

In C, the distinction between characters and numbers is blurred. There
is a data type called char, but it is really just a 1-byte integer value that
can be used to hold either characters or numbers. For instance, after
making the declaration,

char c;

you can make either of the following assignments:

c 'A';
c 65;

In both cases, the decimal value 65 is loaded into the variable c since 65
is the ASCII code for the letter' A'. Note that character constants are
enclosed in single quotes. The quotes tell the compiler to get the nu­
meric code value of the character. For instance, in the following exam­
ple, a gets the value 5, whereas b gets the value 53 since that is the ASCII
code for the character "5".

char a , b;
a 5;
b = '5';

The following program reads a character from a terminal and then dis­
plays the code value of the character. The %c format in the scanf() call
indicates that the data item to be read is a character. The %d format in
the printf() call tells the function to output the character in its integer
form.

/* Print the numeric code value of a character */

#include <stdio.h>

main()
{

}

char ch;

printf("Enter a character:");
scanf ("%c", &ch);
printf("Its numeric code value is: %d\n" , ch);
exit (0);

www.manaraa.com

Scalar Data Types 47

Because chars are treated as small integers, you can perform arithmetic
operations on them. In the following lines, j gets the value 131 since' A'
equals 65 and 'B' equals 66.

int j;
j = 'A' + 'B';

In the ASCII character set, character codes are ordered alphabetically.
An uppercase' A' , for example, is 65, a 'B' is 66 .. .'Z' is 90. Lowercase
letters start at 97 and run through 122. This makes it fairly easy to imple­
ment a function that changes a character from uppercase to lowercase:

char to_lower(ch)
char ch;
{

return ch +32;
}

However, if you assume an ASCII character set, and add or subtract 32,
your program will fail when you run it on a machine that uses EBCDIC or
some other character code. To avoid this problem, the C runtime library
contains two functions called toupperO and tolowerO that change a char­
acter's case. These functions, described in Appendix A, are guaranteed
to work the same in all implementations. For maximum portability,
therefore, you should use these functions rather than writing your own.

3.3 Different Kinds of Integer
Constants

We have already seen a few integer constants,S, 10, and 2. These are
called decimal constants since they represent decimal numbers. You can
also write octal and hexadecimal constants. An octal constant is written
by preceding the octal value with the digit zero. A hexadecimal constant
is written by preceding the value with a zero and an x or X. Table 3-3
shows some decimal constants and their octal and hexadecimal equiva­
lents.

Note that negative numbers are preceded with a minus sign just as in al­
gebraic notation. (Strictly speaking, negative numbers are really expres­
sions, not constants.) Non-negative numbers may be preceded by an
optional plus sign. (The plus sign is an added feature of the ANSI Stan­
dard which has a non-intuitive meaning. We discuss its impact in Chap­
ter S.) Note also that you cannot include a comma or a decimal point in
an integer constant.

An octal constant cannot contain the digits 8 and 9 since they are not
part of the octal number set. (This restriction was not present in the
K&R standard.)

www.manaraa.com

48 Chapter 3

Decimal Octal Hexadecimal

3 003 Ox3
8 010 Ox8

15 017 OxF
16 020 Ox10
21 025 Ox15

-87 -0127 -Ox57
187 0273 OxBB
255 0377 Oxff

Table 3-3. Integer Constants.

The scanfO and printfO functions have format specifiers for reading and
writing octal and hexadecimal numbers. For octal numbers, the format
specifier is 0; for hexadecimal numbers the format specifier is x. The fol­
lowing program reads a hexadecimal number (with or without the Ox pre­
fix) from the terminal and prints its decimal and octal equivalents.

/* Print the decimal and octal equivalents of a
* hexadecimal constant.
*/

#include <stdio.h>

mainO
{

}

int num;

printf("Enter a hexadecimal constant: ");
scanf ("%x", &num);
printf("The decimal equivalent of %x is: %d\n",

num, num);
printf("The octal equivalent of %x is: %o\n",

num, num);
exit(0);

The number of bytes allocated for an integer constant varies from ma­
chine to machine, depending on the relative sizes of the integer types. In
general, an integer constant has type int if its value can fit in an into Oth­
erwise, it has type long into More precisely, the ANSI Standard states
that the type of an integer constant is the first in the corresponding list in
which its value can be represented. The list is shown in Table 3-4.

www.manaraa.com

Scalar Data Types 49

Form of Constant List of Possible Types

Unsuffixed decimal int, long int, unsigned long int

Unsuffixed octal or
hexadecimal

Suffixed by u or U

Suffixed by I or L

Int, unsigned int, long int,
unsigned long int

unsigned int, unsigned long int

long Int, unsigned long Int

Table 3-4. Types of Integral Constants.

If a constant is too large to fit into the longest type in its list, the results
are unpredictable. Many compilers simply truncate the value and then
load it into memory, whereas others produce an error message.

It is also possible to specifically designate that a constant have type long
int by appending an I or L to the constant (we recommend that you use
an uppercase L since it is easy to confuse a lowercase I with the digit 1).
For example:

55L
0777776L
-OXAAAB321L

Note that octal and hexadecimal constants may also be long .

Box 3-2: ANSI Feature - unsigned Constants

The ANSI Standard alJows you to apply the unsigned qualifier to a
constant. This is done by appending a u or U to the constant, as
in:

55u
077743U
Oxfffu

This syntax, though supported by the A SI Standard, is new, so
older compilers may give you an error if you try to use it.

www.manaraa.com

50 Chapter 3

3.3.1 Escape Character Sequences
We have already used the \n escape sequence, which represents a
newline. The full list of escape sequences is shown in Table 3-5 (\a and
\ v are ANSI extensions, though they are available on many older compil­
ers).

\8 (alert) Produces an audible or visible alert signal.
\b (backspace) Moves the cursor back one space.
\f (form feed) Moves the cursor to the next logical page.
\n (newline) Prints a newline.
\r (carriage return) Prints a carriage return.
\t (horizontal tab) Prints a horizontal tab.
\v (vertical tab) Prints a vertical tab.

Table 3-5. C Escape Sequences.

In addition to the escape sequences listed in Table 3-5, C also supports
escape character sequences of the form,

\octal-number
and

\hex-number

which translates into the character represented by the octal or hexadeci­
mal number. For example, if ASCII representations are being used, the
letter 'a' may be written as '\141' and 'Z' as '\132'. This syntax is most
frequently used to represent the null character as '\0'. This is exactly
equivalent to the numeric constant zero (0). Note that the octal number
does not include the zero prefix as it would for a normal octal constant.
To specify a hexadecimal number, you should also leave out the zero so
that the prefix is an x (uppercase X is not allowed in this context). Sup­
port for hexadecimal sequences is an ANSI extension. The ANSI Stan­
dard also supports trigraph sequences, as described in Box 3-3.

www.manaraa.com

Scalar Data Types

Box 3-3: ANSI Feature - Trigraph Sequences

Because cenain characters used by the C language are not avail­
able on every computer keyboard, the ANSI Standard adopted a
new format for representing these characters. Trigraph sequences
consist of two question marks followed by a third character. Dur­
ing the translation stage, the" compiler convens these sequences
into a single character, as shown in Table 3-6. For example, the
following line of source code,

printf("Print a newline ??/n");

becomes:

printf("Print a newline \n");

Note that this feature is not available on older compilers and may,
in fact, break existing code that accidentally contains trigraph se­
quences.

Trigraph Resulting
Sequence Character

??= # (pound sign)

??([(left bracket)

??I \ (backslash)

??)] (right bracket)

??' A

(caret)

??< { (left brace)

??! I (bar)

??> } (right brace)

??- - (tilde)

Table 3-6. ANSI Trigraph Sequences.

51

www.manaraa.com

52 Chapter 3

3.4 Floating-Point Types
Integers are fine for many occasions but they are inadequate for repre­
senting very large numbers and fractions. For this, you need floating­
point types. There are two ways to write floating-point constants, the
simplest being to place a decimal point in the number. For example,

0.356
5.0
0.000001

.7
7.

are all legal examples of floating-point constants. To declare a variable
capable of holding one of these values, you use the float or double key­
words. For example,

float pi;
double pi_squared;

pi = 3.141;
pi_squared = pi * pi;

The word double stands for double-precision, because on many ma­
chines it is capable of representing about twice as much precision as a
float. The precision refers to the number of decimal places that can be
represented. On many machines, a double also takes up twice as much
memory. A float generally requires four bytes, and a double generally
requires eight bytes, although these sizes are not strict requirements. The­
internal representation of floating-point values is incorporated into the
hardware architecture of each computer and is one of the least-standard­
ized aspects of computers. You should read the documentation for your
particular compiler to discover the range and precision of floats and dou­
bles (these limits are also listed in the <limits.h> header file that comes
with the ANSI runtime library).

The following function takes a double value as an argument that repre­
sents a temperature in Fahrenheit and converts it to Celsius.

www.manaraa.com

Scalar Data Types 53

1* Convert a float value from Fahrenheit to Celsius
*1

double fahrenheit_to_celsius(temp_fahrenheit)
double temp_fahrenheit;
{

}

double temp_celsius;

temp_celsius = (temp_fahrenheit - 32.0) *
100.0/(212.0 - 32.0);

return temp_celsius;

The following function computes the area of a circle, given a radius.

1* Given the radius, find the area of a circle.
*1

#define PI 3.14159

float area_of_circle(radius)
float radius;
{

float area;

area = PI*radius*radius;
return area;

Note that we use the #define feature to create a constant called PI. This
is better than embedding the numeric constant in the code since the
name PI is more meaningful than the string of digits 3.14159.

Box 3-4: ANSI Feature - long double Type

The ANSI Standard supports an additional floating-point type
called long double. This is a new type so it may not be imple­
mented by many compilers. long doubles are intended to provide
even greater range and precision than doubles. On many ma­
chines, however, long double and double are synonymous.

The long double declaration was added by the ANSI Committee
because some architectures support more than two floating types.

www.manaraa.com

54 Chapter 3

3.4.1 Scientific Notation
Scientific notation is a useful shorthand for writing lengthy floating-point
values. In scientific notation, a value consists of two parts: a number
called the mantissa followed by a power of 10 called the characteristic
(or exponent). The letter e or E, standing for exponent, is used to sepa­
rate the two parts. The floating-point constant 3e2, for instance, is in­
terpreted as 3*102 , or 300. Likewise, the value -2.Se-4 is interpreted as
-2.5*10-4 , or -0.00025. The examples in Table 3-7 show some legal
and illegal floating-point constants.

Legal Illegal

3.141 35 No decimal point or exponent
.3333333333 3,500.45 Commas are illegal

0.3 4E The exponent sign must be followed
3e2 by a number

5E-5 4e3.6 The exponent value must be an
3.7e12 integer

Table 3-7. Legal and //legal Floating-Point Constants.

Box 3-5: ANSI Feature - float and long double
constants

By default. all floating-point constants have type double. The
ANSI Standard. however, allows you to override this rule by ap­
pending an for F to the constant to make it float, or an I or L to
make it long double. For example:

3.5
3.5f
3.5e3L

/* A double constant */
/* A float constant */
/* A long double */

These suffixes are useful for forcing floating-point expressions to
be computed with either single or double precision. as explained in
Section 3.9.3.

www.manaraa.com

Scalar Data Types 55

3.5 Initialization
A declaration allocates memory for a variable, but it does not necessarily
store an initial value at the location (fixed duration variables, discussed in
Chapter 7, are an exception). If you read the value of such a variable
before making an explicit assignment, therefore, the results are unpre­
dictable. For example, try the following program:

#include <stdio.h>

main()
{

}

int x;

printf("The value of x is: %d\n" , x);
exit (0);

The output when you execute this program could be just about anything
since x gets the value of whatever is left over in memory from the previ­
ous program execution. Because you often want a variable to start with a
particular value, the C language provides a special syntax for initializing a
variable. Essentially, you just include an assignment expression after the
variable name in a declaration. For example,

char ch = 'A';

allocates one byte for ch, and also assigns the character' A' to it. The in­
itialization is really just a shorthand for combining a declaration state­
ment and an assignment statement. The previous initialization, for in­
stance, is exactly the same as:

char ch;
ch = 'A';

www.manaraa.com

56 Chapter 3

3.6 Finding the Address of an Object
As we described earlier, every variable has a unique address that identi­
fies its storage location in memory. For some applications, it is useful to
access the variable through its address rather than through its name. To
obtain the address of a variable, you use the ampersand (&) operator.
Suppose, for instance, that j is a long int whose address is 2486. The
statement,

ptr = &j;

stores the address value 2486 in the variable ptr. When reading an ex­
pression, the ampersand operator is translated as "address of," so you
would read this statement as: "Assign the address of j to ptr." The fol­
lowing program prints the value of the variable called j and the address of
j:

#include <stdio.h>

mainO
{

}

int j=l;

printf("The value of j is: %d\n" , j);
printf("The address of j is: %p\n" , &j);
exit (0);

The result is:

The value of j is: 1
The address of j is: 3634264

The address represents the actual location of j in memory. The particu­
lar address listed above is arbitrary. It happens to be j's address on our
computer for a particular execution. On another computer, the value
could be different. Note that printjO requires a special format specifier
(%p) to print address values. The %p specifier is a relatively new ANSI
addition to the C language that may not be supported on older compilers.
Many compilers allow you to print an address with the %d, %0, and %x
specifiers, but this is not portable since addresses are not guaranteed to
be represented in the same fashion as integers.

Note that you cannot use the ampersand operator on the left-hand side
of an assignment expression. For instance, the following is illegal since
you cannot change the address of an object:

&x = 1000; /* ILLEGAL */

www.manaraa.com

Scalar Data Types 57

3.7 Introduction to Pointers
In the previous example.

ptr = &j;

the variable ptr that holds the address of j in our first example cannot be
a normal integer variable. To store addresses. you need a special type of
variable called a pointer variable (by storing an address. it points to an
object). To declare a pointer variable. you precede the variable name
with an asterisk. The following declaration. for example. makes ptr a
variable that can hold addresses of long int variables.

long *ptr;

The data type. long in this case. refers to the type of variable that ptr can
point to. For instance. the following is legal:

long *ptr;
long long_var;
ptr = &long_var; /* Assign the address of

* long_var to ptr.

But this is illegal:

long *ptr;
float float_var;

*/

ptr = &float_var; /* ILLEGAL - because ptr can only
* store the address of a long into
*/

The following program illustrates the difference between a pointer vari­
able and an integer variable:

#include <stdio.h>

mainO
{

}

int j=l;
int *pj;

pj = &j;
printf(
printf(
exit (0

The result is:

/* Assign the
"The value of j
"The address of
) ;

The value of j is: 1

address of j
is: %d\n". j
j is: %p\n" ,

The address of j is: 3634264

to pj */
) ;
pj) ;

www.manaraa.com

58 Chapter 3

3.7.1 Dereferencing a Pointer
The asterisk, in addition to being used in pointer declarations, is also
used to dereference a pointer (Le., get the value stored at the pointer ad­
dress). If you have not come across the concept before, the notion of
de referencing can be difficult to grasp at first. The following program
and Figure 3-2 show how dereferencing works.

#include <stdio.h>

MainO
{

}

char *p_ch;
char chI = 'A', ch2;

printf ("The address of p_ch is %p\n", &p_ch);

p_ch = &chl;
printf ("The value stored at p_ch is %p\n", p_ch);

printf("The dereferenced value of p_ch is %c\n" ,
*p_ch);

ch2 = *p_ch;

exit (0);

The output from running this program is:

The address of p_ch is 1004
The value stored at p_ch is 2001
The dereferenced value of p_ch is A

This is a roundabout and somewhat contrived example that assigns the
character' A' to both chI and ch2. It does, however, illustrate the effect
of the dereference (*) operator. Figure 3-2 shows the memory contents
at each stage of the program execution. On our machine, the declara­
tions allocate four bytes for p_ch (pointer variables must be large enough
to hold the highest possible address in the machine so they are often the
same size as long ints) , and one byte each for chI and ch2. chI is in­
itialized to 'A'. The first print() call displays the address of the pointer
variable p _ch. In the next step, p _ch is assigned the address of chI,
which is also displayed. Finally, we display the dereferenced value of
p _ch and assign it to ch2.

www.manaraa.com

Scalar Data Types 59

Memory

Code Variable Address Contents

-4 byte~

1000 E3 p_ch 1004

char *p_ch;

char ch1 = 'A', ch2; -1 byte-

2000 § ch1 2001
ch2 2002

p_ch = &ch1; 1000 ~ p_ch 1004

2000 § ch1 2001

ch2 2002

1000 ~ p_ch 1004

ch2 = *p_ch;

2000

ch1 2001 ~ ch2 2002 'A'

Figure 3-2. Dereferencing a Pointer Variable.

www.manaraa.com

60 Chapter 3

These last steps are the important ones. The expression *p_ch is inter­
preted as: "take the address value stored in p _ch and get the value stored
at that address." This gives us a new way to look at the declaration. The
data type in the pointer declaration indicates what type of value results
when the pointer is dereferenced. For instance, the declaration,

float *fp;

means that when *fp appears as an expression, the result will be a float
value.

The expression */p can also appear on the left side of an expression:

*fp = 3.15;

In this case, we are storing a value (3.15) at the location designated by
the pointer /p. Note that this is different from

fp = 3.15;

which attempts to store the address 3.15 in/po This, by the way, is illegal
since addresses are not the same as integers or floating-point values.

3.7.2 Initializing Pointers
You can initialize a pointer just as you would any other type of variable.
However, the initialization value must be an address. For example, you
could write:

int j;
int *ptr_to_j = &j;

However, you cannot reference a variable before it is declared, so· the
following declarations would be illegal:

int *ptr_to_j = &j;
int j;

3.7.3 Using Pointers
Pointer variables are used frequently with aggregate types, such as arrays
and structures. We have described them in this chapter because they are
an important scalar data type with which you should become familiar. In
later chapters, we describe the full flexibility and power of C pointers.

www.manaraa.com

Scalar Data Types 61

3.8 Typedefs
The C language allows you to create your own names for data types with
the typedef keyword. Syntactically. a typedef is exactly like a variable
declaration except that the declaration is preceded by the typedef key­
word. Semantically. the variable name becomes a synonym for the data
type rather than a variable that has memory allocated for it. For exam­
ple. the statement.

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTEJNTsynonymous with long into The fol­
lowing two declarations are now identical:

long int j;
FOUR_BYTE_INT j;

By convention. typedef names are capitalized so that they are not con­
fused with variable names.

There are a number of uses for typedefs. They are especially useful for
abstracting global types that can be used throughout a program. This ap­
plication of typedefs is described in Chapter 8.

Another use of typedefs is to compensate for differences in C compilers.
For example. some non-ANSI C compilers do not support the unsigned
short type. Using typedefs. you can write the program so that it uses un­
signed short if it's available. or unsigned int when the compiler does not
support unsigned short. For ANSI-conforming compilers. you would
write:

typedef unsigned short USHORT;

For compilers that do not support unsigned short. you would write:

typedef unsigned int USHORT;

Then you would use the typedef name USHORT whenever you want to
declare an unsigned short variable. To compile the program on a differ­
ent machine. all you need to do is find out whether it supports unsigned
short. and write the typedef accordingly.

Note that the typedef definition must appear before it is used in a decla­
ration.

www.manaraa.com

62

Box 3-6: Bug Alert - Confusing typedef with
#define

Chapter 3

At first glance. it may seem that the typedef keyword duplicate
functionality provided by the 'define directive. After all. we could
write.

Idefine USHORT unsigned int

which would serve the same effect as:

typedef unsigned int USHORT;

In this case. the two versions are indeed similar (though there are
some subtle differences). but for more complex type declarations.
'define is inadequate. Suppose. for example. that you want to de­
fine a name that represents pointer to tnt. U ing 'define you
would write:

Idefine PT_TO_INT int *

Then to declare two pointer to ints. you would write.

PT_TO_INT pl. p2;

which expands to:

int *pl. p2;

Because the asterisk appears just once. only pJ is declared as a
pointer to an int; p2 i an int.

If you use a typedef. this problem does not arise. After declaring.

typedef int *PT_TO_INT;

the declaration.

PT_TO_INT pl. p2;

defines both pJ and p2 as pointers to ints.

www.manaraa.com

Scalar Data Types 63

3.9 Mixing Types
The C language allows you to mix arithmetic types in expressions with few
restrictions. For example, you can write:

num = 3 * 2.1;

even though the expression on the right-hand side of the assignment is a
mixture of two types, an int and a double. Also, the data type of num
could be any scalar data type except a pointer.

To make sense out of an expression with mixed types, C performs con­
versions automatically. These implicit conversions make the program­
mer's job easier, but it puts a greater burden on the compiler since it is
responsible for reconciling mixed types. This can be dangerous since the
compiler may make conversions that are unexpected. For example, the
expression,

3.0 + 1/2

does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0.

Implicit conversions, sometimes called quiet conversions or automatic
conversions, occur under four circumstances:

1. In assignment statements, the value on the right side of the assign­
ment is converted to the data type of the variable on the left side.
These are called assignment conversions.

2. Whenever a char or short int appears in an expression, it is con­
verted to an into unsigned chars and unsigned shorts are con­
verted to int if the int can represent their value; otherwise they are
converted to unsigned int (see Box 3-7). These are called integral
widening conversions.

3. In an arithmetic expression, objects are converted to conform to the
conversion rules of the operator.

4. In certain situations, arguments to functions are converted. This
type of conversion is described in detail in later chapters.

As an example of the first type of conversion, suppose j is an int in the
following statement:

j = 2.6;

Before assigning the double constant to j, the compiler converts it to an
int, giving it an integral value of 2. Note that the compiler truncates the
fractional part rather than rounding to the closest integer.

The second type of implicit conversion, called integral widening or inte­
gral promotion, is almost always invisible.

www.manaraa.com

64 Chapter 3

To understand the third type of implicit conversion, we first need to
briefly describe how the compiler processes expressions. The discussion
that follows is only cursory-we describe expressions in detail in Chapter
5.

3.9.1 Implicit Conversions in Expressions
When the compiler encounters an expression, it divides it into subexpres­
sions, where each subexpression consists of one operator and one or
more objects, called operands, that are bound to the operator. For ex­
ample, the expression,

-3 / 4 + 2.5

contains three operators: -, /, and +. The operand to - is 3; there are
two operands to /, -3 and 4; and there are two operands to +, -3/4 and
2.5.

The minus operator is said to be a unary operator because it takes just
one operand, whereas the division and addition operators are binary op­
erators. Each operator has its own rules for operand type agreement, but
most binary operators require both operands to have the same type. If
the types differ, the compiler converts one of the operands to agree with
the other one. To decide which operand to convert, the compiler resorts
to the hierarchy of data types shown in Figure 3-3, and converts the
"lower" type to the "higher" type. For example:

1 + 2.5

involves two types, an int and a double. Before evaluating it, the compil­
er converts the int into a double because double is higher than int in the
type hierarchy. The conversion from an int to a double does not usually
affect the result in any way. It is as if the expression were written:

1.0 + 2.5

The rules for implicit conversions in expressions can be summarized as
follows. Note that these conversions occur after all integral widening
conversions have taken place.

• If a pair of operands contains a long double, the other value is
converted to long double.

• Otherwise, if one of the operands is a double, the other is con­
verted to double.

'. Otherwise, if one of the operands is a float, the other is con­
verted to a float.

www.manaraa.com

Scalar Data Types 65

• Otherwise, if one of the operands is an unsigned long int, the
other is converted to unsigned long into

• Otherwise, if one of the operands is a long int, then the other is
converted to long into

• Otherwise, if one of the operands is an unsigned int, then the
other is converted to unsigned into

In general, most implicit conversions are invisible. They occur without
any obvious effect. The following sections describe implicit conversions
in more detail.

long double

double

float

unsigned
long Int

Figure 3-3 . Hierarchy of C Scalar Data Types.

3.9.2 Mixing Integers
There are four possible sizes of integers-char, short, int, and long-and
they may be mixed freely in an expression. Due to the integral widening
rules, the compiler converts chars and shorts to ints before evaluating an
expression. This is why Figure 3-3 shows int at the bottom of the in­
verted pyramid-all smaller integer types are converted to int or un­
signed int before an expression is evaluated. For example, in the

www.manaraa.com

66 Chapter 3

following program, c and j are expanded to ints before the arithmetic ex­
pression is evaluated. The constant 8 is already an int so it does not
need to be converted.

maine)
{

}

char c = 5
short j = 6;
int k = 7;

k = c+j+8;
exit (0);

To convert a short 5 to an int, all that is required is to add 2 additional
bytes of zeroes. The short variable with value 5, would be stored in bi­
nary form:

00000000 00000101

After converting it to a four-byte int, its representation is:

00000000 00000000 00000000 000000101

Clearly, this does not present any problems since the object retains its
value of 5. For negative values, the process is slightly more complicated
since the compiler must ensure that the converted value is also negative.
It does this by filling the additional bytes with ones rather than zeroes.
This is known as sign extension. For example, the short value -5 is rep­
resented in two's complement notation as:

11111111 11111011

To convert it to a long int whose value is -5, the compiler adds two bytes
filled with ones:

11111111 11111111 11111111 11111011

Integral widening conversions are almost always innocuous. Problems
arise, however, when an implicit conversion shortens an object. This
only happens' in assignment conversions. For example, suppose c is a
char, and you make the assignment:

c = 882;

The binary representation of 882 is:

00000011 01110010

It requires two bytes of storage, but the variable c has only one byte allo­
cated for it, so the two upper bits don't get assigned to c. This is known
as overflow and the result is not defined by the ANSI Standard for signed
types.

www.manaraa.com

Scalar Data Types 67

Usually, a compiler simply ignores the extra byte, so c would be assigned
the right-most byte:

01110010

This would erroneously give c the value of 114. It is important, there­
fore, to make sure that you do not exceed the size limits when you assign
values to variables. The principle illustrated for chars also applies to
shorts, ints, and long ints. For unsigned types, however, C has well­
defined rules for dealing with overflow conditions. When an integer
value x is converted to a smaller unsigned integer type, the result is the
non-negative remainder of,

where U _MAX is the largest number that can be represented in the
shorter unsigned type. For example, if j is an unsigned short, which is
two bytes, then the assignment,

j = 71124;

assigns to j the remainder of:

71124 / (65535+1)

The remainder is 5588. Note that for non-negative numbers, and for
negative numbers represented in two's complement notation, this is the
same result that you would obtain by ignoring the extra bytes.

3.9.3 Mixing Signed and Unsigned Types
The only difference between signed and unsigned integer types is the way
they are interpreted. They occupy the same amount of storage. For ex­
ample, a signed char with bit pattern

11101010

has a decimal value of -22, assuming two's complement notation. An
unsigned char with the same binary representation has a decimal value
of 234. A problem arises when you mix a signed type with an unsigned
type. For example, what is the value of this expression?

lOu - 15

One might expect the result to be -5, but this is not the case. The ANSI
Standard states that if one of the operands of a binary expression has
type unsigned int and the other operand has type int, the int object is
converted to unsigned int, and the result is unsigned. Using this rule,
which is described in more detail in Box 3-7, the value of the expression
shown above would be 4,294,967,291 (assuming the machine has 4-byte

www.manaraa.com

68 Chapter 3

ints and uses two's complement notation). This value is derived from the
same bit pattern used to represent -5.

Box 3-7: ANSI Feature - Unsigned Conversions

Prior to the ANSI Standard, there was no agreed-upon method for
promoting unsigned chars and unsigned shorts. Should they be
widened to lnts or to unsigned ints? There was also confusion
about converting operands when one was a long unsigned integer
and the other was a short signed integer. Should the short un­
signed integer be widened to an unsigned int, making the result
unsigned, or should it be converted to a signed int, making the re­
sult a signed integer?

Most compilers converted unsigned chars and unsigned shorts to
unsigned ints, figuring that the unsigned quality was too important
to convert away. Likewise, when signed and unsigned objects met
in expressions, the the result was always unsigned. But this sign­
preserving strategy sometimes produces strange results. For exam­
ple, if a is an unsigned short whose value is 2, then the expres­
sion,

a - 3

evaluates to a very large unsigned value rather than the signed
value of -1.

To avoid this problem, the ANSI Committee adopted a different
conversion method, known as value-preserving. This method con­
verts unsigned chars and unsigned shorts to int, assuming that
the int type is larger than unsigned char and unsigned short, re­
spectively. If int is not larger, the object is converted to unsigned
int. Assuming 16-bit shorts and 32-bit ints in the previous ex­
ample, a would be converted to int rather than unsigned int, so
the result of the expression would be "'1.

Note that the difference between sign-preserving and value-pre­
serving rules only becomes manifest when an unsigned type is
shorter than an into If both operands are unsigned ints, the result
is unsigned, so that the expression,

2u - 3u

always evaluates to a large unsigned value.

www.manaraa.com

Scalar Data Types 69

In most cases, the conversion from signed to unsigned does not cause
any problems and goes unnoticed. Where you need to be careful is when
you use an unsigned expression to control program flow. Although the
subject of program flow is discussed in the next chapter, the following ex­
ample should be clear.

mainO
{

}

unsigned jj;
int k;

if (jj-k < 0) /* This is almost certainly a bug. */
foo 0 ;

exit (0);

Translated into English, the program states: "if jj minus k is less than
zero, call thefoo() function; otherwise, end the program." However, be­
cause of unsigned conversion rules, the expression jj-k will never be less
than zero. This is obviously not what is intended by the programmer.
Good compilers are able to diagnose these bugs and issue a warning mes­
sage.

3.9.4 Mixing Floating-Point Values
There are three types of floating-point values-float, double, and long
double (ANSI extension). There is no difficulty with mixing them in an
expression. After dividing the expression into subexpressions, the com­
piler widens the smaller object of each binary pair to match the wider ob­
ject. If, for example, a binary expression contains a float and a double,
the float would be converted to double. This would not affect their
value in any way and would go unnoticed. It should be pointed out, how­
ever, that many computers perform arithmetic With floats much faster
than with doubles and long doubles. You should only use these larger
types if you need the greater range or precision.

As is the case with mixing integers, the problem with floating-point con­
versions occurs when you assign a larger type to a smaller type. There
are two potential problems. One is the loss of precision, and the other is
an overflow condition. Suppose that on your computer a double can
represent 10 decimal places, and a float can only represent 6 decimal
places. If f is a float variable, and you make the assignment

f = 1.0123456789

the computer rounds the double constant value before assigning it to f.
The value actually assigned to f, therefore; might be 1.012346 (if floats

www.manaraa.com

70 Chapter 3

are only 32 bits long). This probably will not cause any problems unless
your program requires great accuracy. If you need more accuracy, you
should use double or long double variables, not floats.

A more serious problem occurs when the value being assigned is too large
to be represented in the variable. For example, the largest positive num­
ber representable by a float might be 2e38 (the actual ranges vary from
computer to computer). What happens if you try to execute the following
assignment?

f = 2e40;

The behavior is not defined by the ANSI Standard, but on some comput­
ers this statement would produce a runtime error. A runtime error is an
error that occurs while the program is actually executing, as opposed to
errors that occur when you compile the program (called compile-time er­
rors). Runtime errors are particularly difficult to recover from, so you
should go to great pains to avoid them. If there is any chance that an as­
signment statement will cause a floating-point overflow, you should use a
larger floating-point type.

3.9.5 Mixing Integers with Floating-Point Values

It is perfectly legal to mix integers and floating-point values in an expres­
sion, to assign a floating-point value to an integer variable, or assign an
integer value to a floating-point variable. The simplest case is assignment
of an integer to a floating-point variable. In this case, the integer value is
implicitly converted to a floating-point type. If the floating-point type is
capable of representing the integer, there is no change in value. If f is a
double, the assignment

f = 10;

is executed as if it had been written:

f = 10.0;

This conversion is invisible. There are cases, however, where a floating­
point type is not capable of exactly representing all integer values. Even
though the range of floating-point values is generally greater than the
range of integer values, the precision may not be as good for large num­
bers. In these instances, conversion of an integer to a floating-point
value may result in a loss of precision. For example, try running the fol­
lowing example on your computer.

www.manaraa.com

Scalar Data Types

#include <stdio.h>

mainO
{

}

long int j
float x;

x = j;

2147483600;

printf("j is %d\nx is %10f\n", j, x);
exit (0);

71

The case of mixing integer and floating-point values in expressions is
similar. The compiler converts all integers into the largest floating-point
type present. If j is an iot and f is a float, the expression,

f + j

would cause j to be quietly converted to a float. In the expression,

f + j + 2.5

both f and j would be converted to doubles because the constant 2.5 is a
double.

The most risky mixture of integer and floating-point values is the case
where a floating-point value is assigned to an integer variable. First, the
fractional part is discarded. Then, if the resulting integer can fit in the
integer variable, the assignment is made. In the following statement, as­
suming j is an iot, the double value 2.5 is converted to the iot value 2
before it is assigned.

j = 2.5;

This causes a loss of precision which could have a dramatic impact on
your program. The same truncation process occurs for negative values.
After the assignment,

j = -5.8;

the value of j is -5.

An equally serious situation occurs when the floating-point value cannot
fit in an integer. For example:

j = 999999999999.888888

This causes an overflow condition which may halt program execution. As
a general rule, it is a good idea to keep floating-point and integer values
separate unless you have a good reason for mixing them.

www.manaraa.com

72 Chapter 3

3.1 0 Explicit Conversions - Casts
The previous section describes quiet conversions that the C language per­
forms under certain circumstances. It is also possible to explicitly convert
a value to a different type. Explicit conversion is called casting, and is
performed with a construct called a cast. To cast an expression, enter
the target data type enclosed in parentheses directly before the expres­
sion. For example,

j = (float) 2;

converts the integer 2 to a float before assigning it to j. Of course, if j is
an integer, the compiler would implicitly convert the value back to an in­
teger before making the assignment.

Casting is a useful operation in a number of diverse situations. Consider,
for example, the following situation:

int j = 2, k = 3;
float f;

f = k/j;

At first glance, it might appear that the f gets assigned the value 1.5.
However, a closer look reveals that f is actually assigned the value 1.0.
This is because the expression

k/j

contains only ints, so there is no reason to "promote" either variable to a
floating-point type. The result of an integer expression is always an inte­
ger, so the true value 1.5 is truncated to the integer value 1. Then, be­
cause it is being assigned to a floating-point variable, the value 1 is con­
verted to 1.0. One way to avoid this problem is to cast either, or both, of
the integer variables to floats. For instance:

f = (float)j/k;

This explicitly converts j to a float. Then the implicit conversion rules
come into play. Because j has been converted to a float, the system
automatically converts k to a float as well. The result of an expression
containing two floats is a float, so f gets assigned the true expression
value, which is 1.5.

www.manaraa.com

Scalar Data Types 73

3.11 Enumeration Types
In addition to integer. floating-point. and pointer types. the scalar types
also include enumeration types. Other computer languages. such as Pas­
cal. also have enumeration types that enable you to declare variables and
the set of named constants that can be legally stored in the variable.

Enumeration types are particularly useful when you want to create a
unique set of values that may be associated with a variable. The compiler
reports an error if you attempt to assign a value that's not part of the de­
clared set of legal values to an enum variable.

In the following example. we declare two enumeration variables called
color and intensity. color can be assigned one of four constant values:
red. blue. green. and yellow. intensity can be assigned one of three con­
stant values: bright. medium. or dark.

enum { red. blue. green. yellow} color;
enum { bright, medium, dark} intensity;

As shown in our examples. the syntax for declaring enumeration types is
to start with the enum keyword followed by the list of constant names en­
closed in braces, followed by the names of the enum variables. There is
another syntax described in Chapter 8 that is slightly more complex.

Because enumeration types were not part of the original K&R standard.
their implementation has varied from one C compiler to another. Most C
compilers issue warning messages when an enum type conflict occurs, al­
though the warning is not required by the ANSI Standard. (In fact, the
Standard prohibits compilers from halting compilation due to enum type
conflicts.) A good compiler, however, would issue warnings for all of the
type conflicts and misleading usages shown below:

color = yellow; /* OK */
color = bright; /* type conflict */
intensity = bright; /* OK */
intensity = blue; /* type conflict */
color = 1; /* type conflict */
color = blue + green; /* misleading usage */

Constant names in an enum declaration receive a default integer value
based on their position in the enumeration list. In most cases, the integer
value is not important because you are treating the enumeration as a
unique value. Nevertheless. it's helpful to know how the compiler is stor­
ing the values.

The default values start at zero and go up by one with each new name.
In the declaration of color. for instance, red. blue, green, and yellow rep­
resent the integer values O. 1, 2. and 3, respectively.

www.manaraa.com

74 Chapter 3

You can override these default values by specifying other values. If you
do specify a value, all subsequent default values begin at one more than
the last defined value. For example,

enum { APPLES, ORANGES = 10, LEMONS, GRAPES = -5,
MELONS} ;

is the same as:

enum { APPLES=O, ORANGES = 10, LEMONS = 11,
GRAPES = -5, MELONS = -4 };

Note that the assigned values need not be in ascending order, though for
readability it is a good idea to write them that way.

The compiler need only allocate as much memory as is necessary for an
enum value. In our color example, for instance, a good compiler will re­
alize that the potential values of color are small enough that only one byte
is needed for the variable. This can make a difference when enum vari­
ables are embedded ,in aggregate types, as described in Chapter 8.

3.12 The void Data Type
The void data type was not an original element of the K&R standard, but
in recent years it has become an accepted part of the C language. Prior
to the ANSI Standard, however, its semantics were somewhat vague.
This section describes the ANSI version of void.

The void data type has two important purposes. The first is to indicate
that a function does not return a value. For instance, you may see a
function definition such as:

void func(a, b)
int a, b;
{

}

This indicates that the function does not return any useful value. Like­
wise, on the calling side, you would declare JuncO as:

extern void func();

This informs the compiler that any attempt to use the returned value
fromJuncO is a mistake and should be flagged as an error. For example,
you could invoke JuncO as follows:

func(x, y);

www.manaraa.com

Scalar Data Types 75

But you cannot assign the returned value to a variable:

num = func(x, y); /* This should produce an

* error
*/

The other purpose of void is to declare a generic pointer. However, we
defer a discussion of this subject to Chapter 7.

www.manaraa.com

76 Chapter 3

Exercises
1. When printing a float or double with the %f format specifier, how

many decimal digits does printf() output? Does printf() round or
truncate the value?

2. After reading the description of printf() in Appendix A, write a
function that accepts a double argument and prints it out, but only
prints three decimal digits.

3. Write a program with the following declarations in it that prints out
the address of each variable.

char c;
int j;
float x;

What do the addresses tell you about the way your compiler allo­
cates memory for variables?

4. Write the octal, decimal, and hexadecimal equivalents of the follow­
ing binary numbers:

a) 00010010
b) 01100101
c) 01101011
d) 10111011 (assume two's complement notation)
e) 00111111
f) 00000100 01100100

5. Write declarations for the following:

a) An unsigned long integer.
b) A double-precision floating-point variable.
c) A pointer to a char.
d) A char initialized to 'x'.
e) An external function returning an unsigned int.

www.manaraa.com

Scalar Data Types 77

6. Give the binary two's complement representation of the following:

a) 1
b) -1
c) 255
d) 256
e) 511
f) 512
g) 513
h) 127
i) 128
j) -128
k) OxFF
I) Ox7F

7. Give the binary one's complement representation of the numbers
listed in exercise 7.

www.manaraa.com

Chapter 4

Control Flow

"Begin at the beginning," the King said, very
gravely, "and go on till you come to the end: then
stop." - Lewis Carroll, Alice in Wonderland

The programs listed in the previous chapter were architecturally simple
because they were straight line programs. That is, statements were exe­
cuted in the order in which they appeared without any branching or repe­
tition. Most programming problems are not so simple. In fact, the great
power of programming languages stems from their ability to instruct the
computer to perform the same task repeatedly, or to perform a different
task if parameters change. In high-level programming languages, this is
accomplished with control flow statements that allow you to alter the se­
quential flow. Control-flow statements fall into two general categories:
conditional branching and looping. Conditional branching is the ability
to decide whether or not to execute code based on the value of an ex­
pression. Looping, also called iteration, is the ability to perform the
same set of operations repeatedly until a special condition is met.

www.manaraa.com

Control Flow 79

4.1 Conditional Branching
Conditional branching is the most basic control feature of any program­
ming language . It enables a program to make decisions, to decide
whether or not to execute a sequence of statements based on the value of
an expression. Since the value of the expression may change from one
execution to another, this feature allows a program to react dynamically
to different data. In C, conditional execution is performed with the if
and else keywords. The syntax is shown in Figure 4-1.

The form of an if statement is fairly simple. The if keyword is followed
by an expression enclosed in parentheses. If the expression is "true"
(non-zero), the next statement is executed. Otherwise, execution skips
over the next statement:

if (x)

statementl;
statement2;

/* Executed only if x is non- zero */
/* Always executed . */

expression statement

~-PI statement I--~ ---
Figure 4-1. Syntax of an if ... else Statement.

If the else clause is present, the statement following the else keyword is
executed whenever the if expression is "false" (zero) :

if (x)

statement1;
else

statement2 ;
statement3;

/* Executed only if x is non-zero */

/* Executed only if x i s zero */
/* Always executed */

This syntax mirrors the syntax we use in everyday language. For exam­
ple, the sentence, "If the light is red, stop; otherwise, go" would be writ­
ten in Cas:

if (light == red)
stop;

else
go ;

www.manaraa.com

80 Chapter 4

Note that there is no then after the if as in other programming languages
such as Pascal and FORTRAN.

A common use of the if statement is to test the validity of data. Suppose,
for example, that you want a program that accepts an integer value from
the user and prints the square root of the number. Before calling the
sqrtO function, which is part of the runtime library, you should make
sure that the input value is non-negative:

#include <stdio.h>
#include <math.h> /* Include file for sqrt() */

main()
{

double num;

printf("Enter a non-negative number: ");

/* The %If conversion specifier indicates a
* data object of type double.

}

*/
scanf(''%If'', &num);
if (num < 0)

printf("Input Error: Number is negative.\n");
else

printf("The square root is: %f\n", sqrt(num »;
exit (0);

Note that the else is necessary. If we write the program without the else,
as shown on the next page, the program will print an error message when
the input value is less than zero, but then go ahead and mistakenly try to
print the square root.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <math.h>

main()
{

double num;

printf("Enter a non-negative number: ");
scanf (''%If'', &num);
if (num < 0)

printf("Input Error: Number is negative.\n");
/* Next statement is always executed. */

81

printf("The square root is: %f\n", sqrt(num));

exit(0);
}

The indentations after if and else are included for readability, not for
functionality. The program could be written:

#include <stdio.h>
#include <math.h>
main() {double num;
printf ("Enter a non-negative number: "); scanf (''%If'',
&num) ;
if (num <
0) printf("Input Error: Number is negative.\n");
else printf("The square root is: %f\n",
sqrt(num»; exit(O);
}

Although this program will run correctly, it reflects poor programming
style since it is difficult to read. The normal convention is to put the
statement following an if or else on its own indented line. In this book,
we always indent two spaces at a time, although some people prefer to in­
dent 3, 4, or even 8 spaces at a time.

www.manaraa.com

82 Chapter 4

4.1.1 Comparison Expressions
Typically, the conditional expression in an if statement is a comparison
between two values. Altogether, there are six comparison operators
(sometimes called relational operators), as shown in Table 4-1.

<

>

<=

>=

!=

less than

greater than

less than or equal to

greater than or equal to

equal to

not equal to

Table 4-1. Relational Operators.

Note especially that the "equal to" comparison operator consists of two
equal signs. One of the most common mistakes made by beginners and
experts alike is to confuse the equal to (==) operator with the assignment
operator (=). (See Box 4-1 for a discussion of when this confusion is
particularly dangerous.)

Relational expressions are often called Boolean expressions, in recogni­
tion of the nineteenth century mathematician and logician, George
Boole. Boole reduced logic to a propositional calculus, involving only
true and false values.

Many programming languages, such as Pascal, have Boolean data types
for representing TRUE and FALSE. The C language, however, repre­
sents these values with integers. Zero is equivalent to FALSE, and any
non-zero value is considered TRUE.

Like the arithmetic operators described in Chapter 3, the relational op­
erators are binary operators. The value of a relational expression is an
integer, either 1 (indicating the expression is true) or 0 (indicating the
expression is false). The examples in Table 4-2 illustrate how relational
expressions are evaluated.

www.manaraa.com

Control Flow 83

Expression Value

-1 < 0 1
0> 1 0
0== 0 1
1 1= -1 1
1 >= -1 1
1 >10 0

Table 4-2. Relational Expressions.

Box 4-1: Bug Alert - Confusing = with ==

One of the most common mistakes made by beginners and experts
alike is to use the assignment operator (=) instead of the equality
operator (==). For instance:

if (j = 5)
do_something{) ;

What is intended, clearly, is that the dOjomething() function
should only be invoked if j equals five. It should been written:

if (j -- 5)
do_something{) ;

Note that the first version is syntactically legal since all expressions
have a value. The value of the expression j = 5 is 5. Since this is a
non-zero value the if expression will always evaluate to true and
do_something() will always be invoked. There are a few C compil­
ers on the market that are able to recognize this bug and issue a
warning message.

Because Boolean values are represented as integers, it is perfectly legal to
write:

if (j)

statement;

www.manaraa.com

84 Chapter 4

If j is any non-zero value, statement is executed; if j equals zero, state­
ment is skipped. This aspect of the language creates some interesting
possibilities. Suppose, for instance, that you want to write a program that
reads a character and prints it out if it is a letter of the alphabet, but ig­
nores it if it is not an alphabetic character. Recalling that the runtime li­
brary function isalpha 0 returns a non-zero value if its argument is a let­
ter, you could write a program that checks whether the input is an alpha­
betic character, as shown on the following page.

#include <stdio.h>
#include <ctype.h> /* included for isalpha() */

MainO
{

}

char ch;

printf("Enter a character: ");
scanf("%c", &ch);
if (isalpha(ch »

printf ("%e", ch);
else
printf("%c is not an alphabetic character.\n",

ch);
exit(0);

Note that the statement

if (isalpha(ch »

is exactly the same as:

if (isalpha(ch) != 0)

The practice of using a function call as a conditional expression is a com­
mon idiom in C. It is especially effective for functions that return zero if
an error occurs, since you can use a construct such as:

if (func(»
proceed;

else
error handler;

www.manaraa.com

Control Flow 85

4.1.2 Compound Statements
Any statement can be replaced by a block of statements, sometimes
called a compound statement. A compound statement must begin with a
left brace { and end with a right brace}. A function body, therefore, is
really just a compound statement. Compound statements are particularly
useful when used with flow control statements because they allow you to
execute a group of statements rather than a single statement. To condi­
tionally execute more than one statement, therefore, surround the group
of statements with left and right braces, as shown in the following exam­
ple:

#include <stdio.h>

MainO
{

}

double num;

printf("Enter a non-negative number: ");
scanf (''%If'', &num);
if (num < 0)

printf("That's not a non-negative number!\n");
else
{

}

printf("%f squared is: %f\n", num, num*num);
printf("%f cubed is: %f\n", num, num*num*num);

exit(0);

www.manaraa.com

86

if (num < 0)
print error

else
{

}

print square
print cube

if (num < 0)
print error

else
print square
print cube

Print cube
of nurn

Chapter 4

Correct Version

no Print square
of nurn

Print cube
of nurn

Incorrect Version

no Print square
of nurn

Figure 4-2. Braces Ensure Correct Control Flow.

www.manaraa.com

Control Flow 87

Box 4-2: Bug Alert - Missing Braces

If we remove the braces after the else phrase in the exampl~ in
Section 4.1.2, the program takes on a different meaning, although
it is still a syntactically legal program.

'include <stdio.h>

maine)
{

}

double num;

printf("Enter a non-negative number: ");
scanf ("%If'', &num);
if (num < 0)
printf("That's not a non-negative number\n");

else
printf("%f squared is: 'J.d\n", num, num*num);
print!("%! cubed is: 'J.d\n", num,num*num*num);

exit (0);

The indentation is misleading here because it implies that both the
square and the cube of num will be printed if, and ,only if, num is
not less than zero. Actually, though, only the first statement after
the else is part of the flow-control logic. The other printf() state­
ment is always executed, regardless of num's value. Figure 4-2
shows the logic of the two versions.

This example illustrates the important point that the compiler is
oblivious to formatting. The compiler recognizes syntax, such as
spelling and punctuation, but it completely ignores indentations,
comments, and other formatting aids. The formatting is entirely
for humans.

www.manaraa.com

88 Chapter 4

4.1.3 Nested if Statements
A single if statement enables the program to choose one of two paths.
Frequently, however, you need to specify subsequent branching. After
making decision 1, you need to make decision 2, then decision 3, etc.
This type of program flow requires a construct called a nested if state­
ment. Suppose, for example, that you want to write a function that ac­
cepts three integers, and returns the one that has the smallest value. Us­
ing nested if statements, you could write the function shown in Figure
4-3.

The else phrases, except for the last one, are all necessary to provide
correct conditional execution. It is a worthwhile exercise to draw a pro­
gram flow diagram with the else phrases omitted. Note that when an else
is immediately followed by an if, they are usually placed on the same
line. This is commonly called an else if statement, although it is really an
if statement nested within an else phrase.

int min(a, b, c)
int a, b, c;
{

}

if (a < b)
if(a < c)

return a;
else

return c;
else if (b < c)

return b;
else

return c;

Figure 4-3. Logic of a Nested if Statement.

www.manaraa.com

Control Flow 89

Box 4-3: Bug Alert - The Dangling else

Nested if statements create the problem of matching each else
phrase to the right if statement. This is often called the dangling
else problem. In the minO function. for example. note that the
first else is associated with the second if. The general rule is:

An else is always associated with the nearest previous if.

Each if statement. however. can have only one else phrase. The
next else phrase in minOt therefore. corresponds to the fir t if
because the second if has already been matched up. The final
else phrase corresponds to the third if statement (which i written
as an else If).

It is important to format nested ifs correctly to avoid confusion.
An else phrase should always be at the same indentation level as
its associated if.

4.2 The switch Statement
When there are many paths in a program, if-else branching can become
so convoluted that it is difficult to follow. These situations are usually
prime candidates for use of the switch statement. The switch statement
allows you to specify an unlimited number of execution paths based on
the value of a single expression. For example, the following function has
five branches based on the value of input_argo

int switch_example(input_arg)
char input_arg;
{

}

switch (input_arg
{

}

case 'A':
case 'B':
case 'C':
case 'D':
default :

return
return
return
return
return

1· ,
2;
3;
4· ,
-1;

www.manaraa.com

90 Chapter 4

The function returns 1, 2, 3, or 4 depending on whether input_arg is 'A',
'B', 'C', or 'D', respectively. If input_arg is anything else, the function
returns -1. The same function can be written using ifs and elses:

int switch_example(input_arg)
char input_arg;
{

}

if (input_arg == 'A')
return 1;

else if (input_arg 'B')
return 2;

else if (input_arg 'C')
return 3;

else if (input_arg 'D')
return 4;

else
return -1;

Note that we line up all the else if statements at the same indentation
level to emphasize that it is a multi-branching construct. Even with this
formatting, though, the version using switch is considerably more read­
able. In addition, switch statements often result in more efficient ma­
chine code.

4.2.1 Syntax of a switch Statement
The formal syntax of a switch statement is shown in Figure 4-4. The ex­
pression immediately after the switch keyword must be enclosed in pa­
rentheses and must be an integral expression. That is, it can be char,
short, int or long, but not float, double, or long double. (Note: the
K&R standard requires the expression to be of type int.) The expres­
sions following the case keywords must be integral constant expressions,
meaning they may not contain variables.

The semantics of the switch statement are straightforward. The switch
expression is evaluated, and if it matches one of the case labels, program
flow continues with the statement that follows the matching case label. If
none of the case labels match the switch expression, program flow con­
tinues at the default label, if it exists. (Strictly speaking, the default la­
bel need not be the last label, though it is good style to put it last.) No
two case labels may have the same value.

www.manaraa.com

Control Flow 91

An important feature of the switch statement is that program flow contin­
ues from the selected case label until another control-flow statement is
encountered or the end of the switch statement is reached. That is, the
compiler executes any statements following the selected case label until a
break, goto, or return statement appears. The break statement explic­
itly exits the switch construct, passing control to the statement following
the switch statement. Since this is usually what you want, you should al­
most always include a break statement at the end of the statement list
following each case label.

}

expression

constant
expression

statement

statement

Figure 4-4. Syntax of a switch Statement.

The print_errorO function shown on the following page, for example,
prints an error message based on an error code passed to it. ..

www.manaraa.com

92 Chapter 4

/* Prints error message based on error_code.
* Function is declared with void because it doesn't
* return anything.
*/

#include <stdio.h>
#define ERR_INPUT_VAL 1
#define ERR_OPERAND 2
#define ERR_OPERATOR 3
#define ERR_TYPE 4

void print_errore error_code
int error_code;
{

}

switch (error_code)
{

}

case ERR_INPUT_VAL:
printf("Error: Illegal input value.\n");
break;

case ERR_OPERAND:
printf("Error: Illegaloperand.\n");
break;

case ERR_OPERATOR:
printf("Error: Unknown operator.\n");
break;

case ERR_TYPE:
printf("Error: Incompatible data.\n");
break;

default: printf("Error: Unknown error code %d\n" ,
error_code) ;

break;

The break statements are necessary to prevent the function from printing
more than one error message. The last break after the default case isn't
really necessary, but it is a good idea to include it anyway for consisten­
cy's sake. If, at some later date, you change default to a specific case
and add other cases below it, you needn't worry about forgetting to in­
clude the break.

www.manaraa.com

Control Flow 93

We could write a superior version of the print_errorO function by using
enumeration constants instead of #defined constants. The declaration of
error _code would be:

typedef enum {
ERR_I NPUT_VAL,
ERR_OPERAND,
ERR_OPERATOR,
ERR_TYPE

} ERROR_SET;

The typedef declaration makes ERROR_SET a synonym for the declara­
tion of enumeration constants. If we want to add new error codes, we
need merely invent a new name, and add it to the list. The enum decla­
ration ensures that each name will be given a unique value. Moreover, a
quality compiler will perform type consistency checking to ensure that
you use error _code in a meaningful way. Note also that the name ER­
ROR_SET is much more descriptive than into Typically, the typedef dec­
laration would be placed in a header file where it can be accessed by
other source files.

Sometimes you want to associate a group of statements with more than
one case value. To obtain this behavior, you can enter consecutive case
labels. The following function, for instance, returns 1 if the argument is a
punctuation character, or zero if it is anything else.

/* This function returns 1 if the argument is a
* punctuation character. Otherwise, it returns
* zero.
*/

isyunc(arg
char arg;
{

}

switch (arg)
{

}

case , , .
case , , . ,
case ' . , .
case ' . , . ,
case 'I':
default :

return 1;
return 0;

www.manaraa.com

94 Chapter 4

As a more practical example of the switch statement, consider the fol­
lowing function which accepts three arguments-two operands and an op­
erator-and returns the value of the binary expression. Later, we'll use
this function as part of a calculator program that performs simple arith­
metic on expressions entered from the terminal.

/* This function evaluates an expression, given
* the two operands and the operator.
*/

#include "err.h" /* contains the typedef declaration
* of ERR_CODE.
*/

double evaluate(opl, operator, op2
double opl, op2;
char operator;
{

extern void print_error();

switch (operator)
{

case ' +' : return opl + op2;
case '-': return opl op2;
case ,,*, : return opl * op2;
case 'I': return opl / op2;
default : /* Illegal operator */

print_error (ERR_OPERATOR
exit(I) ;

}
}

) ;

Note that we use the print_errorO function listed previously if the second
argument is not one of the four operators. The exitO function, described
in Appendix A, is a library function that exits the current program and
returns control to the operating system. You should always have a nor­
mal exitO (argument equal to zero) in your mainO function. In addi­
tion, exit 0 is useful in situations such as this one where it is difficult to
recover from an error. In this case, we return a non-zero value to indi­
cate an abnormal exit. How the operating system reacts to different val­
ues returned from exitO varies from one implementation to another.

www.manaraa.com

Control Flow 95

4.3 Looping
Looping, or iteration , directs the computer to perform the same set 'of
operations over and over until a specified condition is met. The C lan­
guage contains three statements for looping:

• The while statement

• The do ... while statement

• The for statement

The following sections describe each in detail.

4.3.1 The while Statement
The syntax of a while statement is shown in Figure 4-5. The semantics
are as follows . First, the expression is evaluated. If it is a non-zero value
(Le., true), statement is executed. After statement is executed, program
control returns to the top of the while statement, and the process is re­
peated. This continues indefinitely until the expression evaluates to zero
(false), at which time program flow jumps to the point immediately fol­
lowing statement. The statement, which is often a compound statement,
is called the body.

expression

statement

Figure 4-5. Syntax of a while Statement.

Figure 4-6 shows the flow of control for a simple while statement. So
long as x is less than y, the program continues to execute the while loop .
With each pass through the loop, however, x is incremented by one .
When it is no longer less than y, control flows to the next statement.

www.manaraa.com

96

while (x < y)

x = x+l;

false

Figure 4-6. Flow Control of a while Statement.

Chapter 4

Because the incrementing operation occurs so frequently, the C language
has a special increment operator called ++. The while statement shown
above, for example, would normally be written:

while (x < y)

x++;

The ++ operator is described in more detail in the next chapter.

As an example of using the while statement, suppose you want to read
characters from the terminal. The scanf() statement is one way to read
data, but it requires that you know what type of data is being entered so
you can use the correct format specifier. To read data when you don't
know the data type, you can use the getchar() function, which reads a
single character from your terminal and returns it as an into Repeated
calls to getchar() enable you to read a string of characters, one at a time.
When getchar() reaches the end of the input, it returns a special value
called EOF. EOF is a constant name defined in the header file
<stdio.h>. Its value is -1 for many implementations, but you should al­
ways use the macro name itself rather than the constant in case an imple­
mentation uses a different value.

The following program combines getcharO and the while statement to
read a string of characters from the terminal, and count the number of
spaces. The loop terminates when the getcharO function reads a
newline, represented by the \0 escape sequence.

www.manaraa.com

Control Flow

#include <stdio.h>

MainO
{

}

printf("Enter a sentence:\n");

ch = getchar();
while (ch != '\n')
{

}

if (ch == ' ')
num_of_spaces++;

ch = getchar();

printf("The number of spaces is %d.\n".
num_of_spaces);

exit (0);

97

Note that we make an assignment to ch before entering the while loop.
This is to ensure that its initial value. which would otherwise be random.
is not accidentally a space or newline character. Note also that the state­
ment part of the while loop is actually a compound statement. A typical
execution of the program would be:

Eh£e~a:S'entence:
How many spaces does this sentence have?
.Th~)number<o£:spa¢e$·:i $. 6 ,

Note, however, that the program does not analyze your input until you
press the newline or RETURN key. This is because computers employ a
temporary storage area called a buffer for keyboard input. This allows
you to edit your input before it is processed. Once you enter a newline
character, the computer sends the entire buffer to the executing program.
The getchar() function then reads the buffer one character at a time.
Chapter 11 describes buffers and I/O in more detail.

4.3.2 The do ... while Statement
One important characteristic of the while statement is that the test condi­
tion is at the top of the loop. This means that if the condition is false (or
zero) the first time, the while body will never be executed. But there are
certain situations where you need to execute the body at least once.
These situations are not common, but when they do occur. you should
use the do ... while statement, which has the form shown in Figure 4-7.

www.manaraa.com

98 Chapter 4

The only difference between a do ... while and a regular while loop is that
the test condition is at the bottom of the loop. This means that the pro­
gram always executes statement at least once (the first time through).
Then, depending on the value of expression, it may loop back to do, or it
may continue with the next statement.

statement

expression

Figure 4-7. Syntax of a de ... while Statement.

Using do ... while instead of while, the previous program would be writ­
ten:

#include <stdio.h>

main()
{

}

printf("Enter a sentence:\n");
do
{

ch = getchar();
if (ch == ' ')

num_of_spaces++;
} while (ch != '\n');

pr intf ("The number of spaces is %d. \n" ,
num_of_spaces);

exit (0);

Note that in this version it is not necessary to include the initial assign­
ment of ch because the do ... while statement guarantees that at least the
first character will be fetched.

www.manaraa.com

Control Flow 99

4.3.3 The for Statement
The last, but certainly not the least, of the iterative statements is the for
statement. The for statement is designed as a shorthand for a particu­
larly common looping situation-when you need to initialize one or more
variables before entering the loop, and you need to change the value of
one or more variables each time through the loop. The syntax of a for
statement is shown in Figure 4-8.

The for statement operates as follows:

1. First, expression1 is evaluated. This is usually an assignment ex­
pression that initializes one or more variables.

2. Then expression2 is evaluated. This is the conditional part of the
statement.

3. If expression2 is false, program control exits the for statement
and flows to the next statement in the program. If expression2 is
true, statement is executed.

4. After statement is executed, expression3 is evaluated. Then the
statement loops back to test expression2 again.

Note that expression1 is evaluated only once, whereas expression2 and
expression3 are evaluated on each iteration.

expression 1

expression2 expression3

statement

Figure 4-8. Syntax of a for Statement.

www.manaraa.com

100 Chapter 4

The easiest way to understand the for statement is to compare it to a
while statement, as shown below. The statement,

for (exprl; expr2; expr3)
statement;

is the same as:

exprl;
while (expr2
{

}

statement;
expr3;

Though difficult to grasp at first, the for statement is probably the most
frequently used of all the iterative statements. An example should make
its operation clearer. The following function returns the factorial of its
argument:

long int factorial(val)
int val;
{

}

int j, fact = 1;

for (j=2; j <= val; j++)
fact = fact*j;

return fact;

If you're having trouble understanding how this function works, try re­
writing it using a while statement in place of the for statement. As an­
other example, consider the following function, which converts a string of
digits typed from the keyboard into an integer.

www.manaraa.com

Control Flow

/* This function reads a string of digits from
* the terminal and produces the string's integer
* value.
*/

#include <stdio.h>
#include <ctype.h>

int make_int()
{

}

int num=O, digit;

digit
for (
{

getchar();
isdigit(digit); digit

num num * 10;
num num + (digit - '0');

}
return num;

The expression

digit - ' 0'

getchar(»

101

converts the character from its code to its real numeric value. Note that
it only works if the codes for zero through ten are continuous and as­
cending. Fortunately, this is the case with all the common codes, includ­
ing ASCII and EBCDIC. In ASCII, for instance, the decimal code for
's' is S3 and the code for '0' is 48. So, if digit is'S', the expression,

digit - '0'

evaluates to

53 - 48

which is S.

www.manaraa.com

102 Chapter 4

Another way to write this function, using while instead of for, would be:

#include <stdio.h>
#include <ctype.h>

int make_int()
{

}

int num=O, digit;

digit = getchar();
while (isdigit(digit »
{

num num * 10;
num num + digit - '0';
digit = getchar();

}
return num;

From a software engineering standpoint, the for version has the advan­
tage that the operation performed after each loop-getting the next char­
acter-is right in the looping statement itself, clearly visible. For a short
program such as this one, it probably doesn't make much difference. But
for large programs, where the loop may contain a page or more of source
code, the for statement makes it easy to find out which variable is chang­
ing with each iteration.

In both versions, we call getchar() twice, which is unfortunate. If we
want to change the getchar() call to a different function call, we need to
change both occurrences. Yet another way to write this function, which
is superior to both of the previous versions, takes advantage of the fact
that an assignment expression yields a value. In this version, shown on
the following page, we call getchar() only once.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

int make_int()
{

int num=O, digit;

while (isdigit(digit
{

num num * 10;

getchar () »

num num + (digit - /0/);
}
return num;

}

103

The assignment to digit and the test of digit are combined in a single ex­
pression. This is probably the simplest version, and the way most experi­
enced C programmers would write the loop. Later in this chapter, we'll
return to this function and revise it so that we can use it in a calculator
program.

4.3.4 Omitting Expressions
Note from the syntax diagram (Figure 4-8) that it is legal to omit any or
all of the three expressions in a for statement. However, you must in­
clude the two semicolons. In practice, it is common to omit expression]
or expression3, but expression2 is almost always included since it is the
test condition. Also, there is usually no reason to omit both expression]
and expression3 since that would result in the same functionality as a
while statement. The following function, which prints a specified num­
ber of newlines, does not use expression] since there is no need to make
assignments before the loop is entered. The only variable, newline_num,
gets its value from the calling function.

#include <stdio.h>

void pr_newline(newline_num
int newline_num;
{

}

for (; newline_num> 0; newline_num--)
printf ("\n");

Note that "--" is analogous to "++". The expression,

newline_num--

www.manaraa.com

104 Chapter 4

is equivalent to:

newline_num newline_num - 1

Box 4-4: Bug Alert - Off-By-One Errors

A common programming error is to iterate through a loop the
wrong number of times. Usually, when you're off, you're off by
one because you have used the wrong relational operator (e.g., <
instead of <=). Off-by-one errors are especially pernicious be­
cause they usually do not produce a compile-time or runtime er­
ror. Instead, the program runs smoothly but produces erroneous
results. For example, the following function attempts to compute
the factorial of its argument:

long factorial(arg)
long arg;
{

}

long fact - 1, j;

for (j-l; j < arg; j++)
fact - fact • j;

return fact;

This function actually returns the factorial of arg-l because the
conditional expression is

j < arg

instead of

j <= arg

The best way to avoid off-by-one errors is to think through the
problem clearly and determine exactly when the loop will termi­
nate. Also, after writing a function like factorial 0 , you should test
it with known values to make sure it works. This is another reason
for keeping functions small-the smaller they are, the easier they
are to test.

www.manaraa.com

Control Flow 105

4.3.5 Null Statements
Just as it is possible to omit one of the expressions in a for loop, it is also
possible to omit the body of the for loop. This is useful when the loop's
work is being performed by the expressions. For example, the following
function reads spaces from the terminal and discards them. A space is
defined by the runtime library isspace () function as space characters,
tabs, and newlines.

#include ~stdio.h>
#include <ctype.h> /* Header file for isspace(). */

void skip_spaces()
{

}

int c;

for (c = getchar(); isspace(c); c = getchar(»
/* Null statement */

ungetc(c, stdin);/* Put the non-space character
* back in the buffer.
*/

The ungetc() function is a library function that places a character in the
input buffer. It takes two arguments. The first is the character to be re­
placed, and the second is the stream in which it is to be deposited. The
macro name stdin is defined in <stdio.h> and represents the standard in­
put stream, usually your terminal. The ungetc() function is particularly
useful in situations like this one where it is necessary to read one more
character than you want to process. In the case of skip_spaces ° , for ex­
ample, it is necessary to read the first non-space character to know
where the spaces end. The ungetc() function places this non-space char­
acter back in the input buffer so that it is the character read by the next
getchar() call.

There is no need for a statement in the for loop, so we use a null state­
ment, which is just a lone semicolon. It is a good idea to put the semico­
lon on a separate line to make it more visible since it is potentially mis­
leading. For example, if we place the semicolon on the same line, as
shown below, a casual reader might assume that the ungetc() function is
the body of the for loop.

www.manaraa.com

106 Chapter 4

#include <stdio.h>

void skip_spaces()
{

int c;
for (c = getchar(); isspace(c); c

ungetc(c,stdin);
getchar(»;

This program can also be written using a while loop instead of a for loop:

#include <stdio.h>

void skip_spaces()
{

}

while (isspace(c = getchar() »
/* Null statement */

ungetc(c,stdin);

In this version, the argument to isspace() is the expression:

c = getcharO

Box 4- 5: Bug Alert - Misplaced Semicolons

A common programming mi take is to place a emicolon immedi­
ately after a control flow tatement. For in tance, writing

if (j -- 1);
j - 0;

instead of:

if (j == 1)

j .. 0;

Placing a semicolon after the te t condition cau e the compiler to
execute a null statement whenever the if ex pres ion is true. It is a
if you had written:

if (j -- 1)
/* null statement */

j - 0;

As a result, j gets assigned zero regardless of whether j equal one .
Note that the null statement i syntactically legal, so the mi placed
semicolon does not cause a compiler error.

www.manaraa.com

Control Flow 107

So c is first assigned the value of the next input character, and then c is
passed as an argument to isspace O. If c is a space, isspace 0 returns a
non-zero value making the loop condition true. The body of the loop,
however, is a null statement, so control returns to the top of the loop
where the process is repeated. When c is not a space, isspaceO returns
zero, making the test condition false, and program control flows to the
ungetcO call.

4.4 Nested Loops
Just as it is possible to nest if statements to any depth, it is also possible to
nest looping statements. The key point to remember with nested loops is
that the inner loops must finish before the outer loops can resume iterat­
ing. Consider the following program which prints a multiplication table
up to 10. (The \t format is a special escape sequence that causes the
computer to print a tab.)

#include <stdio.h>

/* print a multiplication table using nested loops */

mainO

{

}

1 2 3 4 5 6 7 8 9 10\n");
------------------------------\n");

int j, k;
printf("
printf(II
for (j =
{

1; j <= 10; j++) /* outer loop */

}

printf("%5dl", j);
for (k=l; k <= 10; k++) /* inner loop */

printf ("%5%d", j *k);
printf ("\n");

exit (0);

www.manaraa.com

108 Chapter 4

The output would be:

1 2 3 4 5 6 7 8 9 10

11 1 2 3 4 5 6 7 8 9 10
21 2 4 6 8 10 12 14 16 18 20

31 3 6 9 12 15 18 21 24 27 30
41 4 8 12 16 20 24 28 32 26 40
51 5 10 15 20 25 30 35 40 45 50
61 6 12 18 24 30 36 42 48 54 60
71 7 14 21 28 35 42 49 56 63 70
81 8 16 24 32 40 48 54 64 72 80
91 9 18 27 36 45 54 63 72 81 90

101 10 20 30 40 50 60 70 80 90 100

For each value of j, the program first prints j, then loops through ten val-
ues of k, printing j*k for each iteration, and then prints a newline.
Proper indentation becomes especially important with nested loops. The
indentation in our program, for example, makes it readily apparent that
the statement

printf("%5d" , j *k);

belongs to the innermost for loop. The %5d conversion specifier forces
printfO to output 5 characters for each number. If the number requires
fewer characters, it is preceded with padding spaces. See Appendix A
for more information about printfO.

The following example is a variation on the make_intO function. This
new function, however, is capable of parsing floating-point values as well
as integers. It utilizes many of the constructs we have discussed, includ­
ing nested loops. Note that the for loop is nested in a while loop which is
itself nested within an if statement.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

#define DECIMAL POINT

double parse_num()
{

int c, j, digit_count = 0;
double value = 0, fractional_digit;

while (isdigit(c = getchar(»
{

}

value
value

value * 10;
value + (c - '0');

/* When c is not a digit, test to see if it is a
* decimal point.
*/

109

if (c == DECIMAL_POINT) /* if yes, get fraction */
while (isdigit(c = getchar() »

}

{

}

digit_count++;
fractional_digit = c - '0';
for (j=O; j < digit_count; j++)

fract_digit fractional_digit/10;
value = value + fractional_digit;

ungetc(c, stdin);
return value;

www.manaraa.com

110 Chapter 4

4.5 A Simple Calculator Program
Using the functions from this chapter and Chapter 3, we can write a sim­
ple calculator program, as shown below.

#include <stdio.h>

mainO
{

}

extern double parse_num(), evaluate();
extern void skip_spaces();
double opl, op2, answer;
int operator;

printf("Enter <number> <op> <number><newline>: ");
skip_spaces() ;
opl = parse_num();
skip_spaces();
operator = getchar();
skip_spaces();
op2 = parse_num();
answer = evaluate(opl, operator, op2);
printf ("%f\n ", answer);
exit (0);

When executed, this program enables you to type a simple arithmetic ex­
pression which is then calculated. For example:

Enter <number> <op> <number><newline>: 3.1*2
6.2

The skip _spaces 0 function allows you to enter any number of spaces be­
tween the operands and operator. Note, however, that the program can­
not handle complicated expressions, such as:

3*(2.3+4.5)/8.1

In Chapter 12, we expand the program so that it can handle complex ex­
pressions such as this one.

It is worth noting that scanf() has the parse_num() and skip_spacesO
functionality built into it. So you could rewrite the preceding program
more simply, as follows. (The %If format specifier indicates a double
variable.)

www.manaraa.com

Control Flow 111

#include <ctype.h>
#include <stdio.h>

main()
{

}

double opl, op2, answer, evaluate();
char operator;

printf("Enter <number> <op> <number><newline>: ");
scanf (''%If %c %If'', &opl, &operator, &op2);
answer = evaluate(opl, operator, op2);
printf("%f\n", answer);
exit (0);

We can make the program even more efficient by passing the result of
evaluateO directly to print/O, without storing it in the variable answer:

#include <ctype.h>
#include <stdio.h>

mainO
{

}

double opl, op2, evaluate();
char operator;

printf("Enter <number> <op> <number><newline>: ");
scanf (''%If %c %If'', &opl, &operator, &op2);
printf("%f\n", evaluate (opl, operator, op2));
exit (0);

4.6 The break and continue Statements
You have already seen the break statement in connection with the switch
statement. In that context, it prevents program flow from falling through
to the next case value. Another way of looking at it is that the break
statement prematurely terminates the switch statement, causing program
control to flow to the next statement after the switch. This is also
break's purpose when used within a looping statement.

www.manaraa.com

112 Chapter 4

Suppose you want to process 50 characters or an entire line, whichever
comes first. You could write:

for (cnt = 0; cnt < 50; cnt++)
{

}

c = getchar();
if (c == '\n')

break;
else

/* process character */

/* program continues here after break statement */

As soon as a newline character is encountered, the break statement is
executed, and program control flows to the statement following the for
loop. Otherwise, the loop iterates until cnt equals 50.

break statements should be used with caution since they force program
control to jump discontinuously to a new place. Too many break state­
ments can make a program difficult to follow. There is usually another
way to write the code without using break. We talk more about some of
these methods in the following chapter. There is, however, no equally
good substitute for using the break statement in a switch construct.

The continue statement provides a means for returning to the top of a
loop earlier than normal. It is particularly useful when you want to by­
pass the remainder of the loop for some reason. Suppose you want to
modify the make_intO function so that it skips non-digit characters, as
shown on the following page. If the input is A3b-45C, for example, the
function would return 345. .

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

int mod_make_int()
{

}

int num = 0, digit;

while «digit = getchar (» ! = ' \n')
{

}

if (isdigit(digit) == 0)
continue;

num num * 10;
num = num + (digit - '0');

return num;

113

The if statement checks to see whether digit is in fact a digit. If it isn't,
the continue statement is executed. This returns the program to the top
of the while loop, where it reads in the next character.

As with break statements, continue statements should be used judi­
ciously since they break up the natural control flow. However, they are
much preferred over goto statements.

4.7 The goto Statement
Few programming statements have produced as much debate as the goto
statement. The goto statement is necessary in more rudimentary lan­
guages, but its use in high-level languages is generally frowned upon.
Nevertheless, most high-level programming languages, including C, con­
tain a goto statement for those rare situations where it can't be avoided.

The purpose of the goto statement is to enable program control to jump
(or perhaps leap) to some other spot. The destination spot is identified
by a statement label, which is just a name followed by a colon. The label
must be in the same function as the goto statement that references it.
The program on the following page illustrates how the go to statement
works.

www.manaraa.com

114 Chapter 4

#include <stdio.h>
#include <math.h> /* for sqrt() function */

mainO
{

int num;

scanf ("%d", &num);
if (num < 0)

goto bad_val;
else
{

}

printf("The square root of num is %f",
sqrt(num));

goto end;

bad_val: printf("Error: Negative Value.\n");
exit (1);

end: exit (0);
}

As with most usages of goto, this program can be written in a much better
fashion without using goto (see the version at the beginning of this chap­
ter). It is difficult, in fact, to describe any general conditions where a
goto statement should be used. There are, however, specific instances
where a goto statement makes the code more efficient or enhances read­
ability. For a full discussion of these cases, we recommend the 1968 pa­
per by E. W. Dijkstra, entitled Goto Statement Considered Harmful. In
general, you should not use gotos unless you have a very good reason for
doing so.

4.8 Infinite Loops
An infinite loop is a loop that does not contain a terminating condition or
a loop in which the terminating condition is never reached. In most in­
stances, infinite loops are produced by bugs in the program. For exam­
ple:

for (j=0; j < 10; j++)
{

j = 1;
}

www.manaraa.com

Control Flow 115

This loop will never finish because j is reassigned the value on each itera­
tion.

On the other hand, there are certain situations where you want an infinite
loop. There are a number of ways to write infinite loops, but the two
most common are:

while (1)
statement;

and

for (;;)
statement;

Both statements have equivalent functionality, so the choice is a matter of
aesthetics. To get out of an infinite loop, you need to abort the program
manually. Sometimes this is what you want. For example, we can re­
write the calculator program with an infinite loop:

#include <ctype.h>
#include <stdio.h>

main()
{

double op1, op2, answer, evaluate();
char operator;

while(l)
{

printf("Enter <number> <op> <number>\
<newline>: ");

}
}

scanf (''%If %c %If'', &op1, &operator, &op2);
answer = evaluate(op1, operator, op2);
printf("%f\n", answer);

The while (1) loop causes the program to run continuously until you abort
it. On most systems, you can abort a program by typing CTRL-C.

www.manaraa.com

116 Chapter 4

Exercises
1. Every computer is limited in the amount of precision it can represent

for floating-point numbers. At some point, where epsilon is very
small, the following expression will be true:

1.0 == 1.0 + epsilon

Write a program to find the largest value of epsilon on your comput­
er. Note that the value of epsilon may be different for floats and
doubles. Find both values (and the value for long doubles if your
compiler supports them). Also, use 1.0 not 0.0 to test epsilon be­
cause most computers have special hardware instructions for han­
dling zero arithmetic.

2. Rewrite the following program without using break, continue, or
goto:

/* Count the number of a's in input */

#include <stdio.h>
#include <ctype.h>

mainO
{

int num_a = 0;
char c;
c = getchar();
while (1)

{
if (c == '\n')

break;
if (isdigit(c »

continue;
if (c == 'a')

goto add_num_a;
get_next_char: c = getchar();

goto end_loop;
add_num_a: num_a++;

goto get_next_char;
end_loop:

}
exit (0);

}

www.manaraa.com

Control Flow 117

3. Write two programs that return the number of x's returned by
getchar(). Write the first one using only if and goto statements.
Write the second one using only while, break, and continue.
Which version is better? Why?

4. Write a function that accepts an integer number and writes that
number of spaces. Using this function, write a program that reads
characters from standard input, and echoes them to standard out­
put, but replaces tabs with five spaces.

S. Many programs that require moving character data from one place
to another use a checksum mechanism to ensure that the data is
transferred correctly. The checksum technique requires a function
that sums the code values of all the characters being sent. If the let­
ters a, b, and c are being sent, for instance, the sum would be 294
because the ASCII values of these characters are 97, 98, and 99.
The sending part of the program would then send this sum value
along with the characters. The receiving part of the program COI]l­

putes the sum of the characters it receives, and compares it with the
sum from the sending component. If the sums match, there is a
high probability that the data was transferred correctly. Write a
checksum() function that returns the sum of a line entered from the
keyboard. Use an unsigned integer to store the sum so that the
value will behave predictably if an overflow occurs.

6. Write two versions of a function that classifies its char argument as
one of:

WHITE_SPACE (space, '\n', '\r', or '\t')
PUNCTUATION (" ,1;:0.')
ALPHA (a - z, A - Z)
NUMERIC (0 - 9)
UNKNOWN (anything else)

For the first version, use only if, else, and return statements. For
the second version, use only switch and return statements. Which
version is better? Why?

7. Write a program that prints out the letters from a to z, and A to Z,
and their integer values.

8. Expand the program in Exercise 7 so that it prints out the integer
values in decimal, octal, and hexadecimal format.

www.manaraa.com

Chapter 5

Operators and Expressions

We must either institute conventional forms of
expression or else pretend that we have nothing to
express. - George Santayana, SoliloQllies in
England

Operators are the verbs of the C language that let you calculate values.
C's rich set of operators is one of its distinguishing characteristics. You
have already seen a number of C operators in the preceding chapters,
such as + (addition), / (division), < (less than), and = (assignment). The
operator symbols are composed of one or more special characters. If an
operator consists of more than one character, you must enter the charac­
ters without any intervening spaces:

x <= Y
x < = y

/* legal expression */
/* illegal expression */

In this chapter, we take another look at the previously mentioned opera­
tors, and introduce some new ones. We also describe expressions in
greater detail.

You can think of operators as verbs, and operands as the subject and ob­
ject of those verbs. An expression consists of one or more operands and
zero or more operators linked together to compute a value. For instance,

a + 2

www.manaraa.com

Operators and Expressions 119

is a legal expression that results in the sum of a and 2. The variable a all
by itself is also an expression. as is the constant 2, since they both repre­
sent a value. There are four important types of expressions:

• Constant Expressions contain only constant values. For exam­
ple. the following are all constant expressions:

5
5 + 6 * 13 / 3.0
, a'

• Integral Expressions are expressions that. after all automatic and
explicit type conversions. produce a result that has one of the in­
teger types. If j and k are integers. the following are all integral
expressions:

j

j * k
j / k + 3
k - 'a'
3 + (int) 5.0

• Float expressions are expressions that. after all automatic and
explicit type conversions. produce a result that has one of the
floating-point types. If x is a float or double. the following are
floating-point expressions:

x

x + 3
x / y * 5
3.0
3.0 - 2
3 + (float) 4

• Pointer expressions are expressions that evaluate to an address
value. These include expressions containing pointer variables.
the "address of" operator (&). string literals. and array names.
If p is a pointer and j is an into the following are pointer expres­
sions:

P
&j
p + 1
"abc"
(char *) OxOOOfffff

The meaning of pointer arithmetic (such as p + 1) is described in
the next chapter.

www.manaraa.com

120 Chapter 5

Class of Operators in that class Associativity Precedence operator

primary () [] -> Left-to-Rlght HIGHEST

unary Cllst fperator
slzeo
& (address of) Right-to-Left
* (dereference)
- + - ++ -- I

multlplloatlve * 1 % Left-to-Rlght

additive + - Left-to-Rlght

shift « » Left-to-Rlght

relational < <= > >= Left-to-Rlght

equality == != Left-to-Rlght

bitwise AND & Left-to-Rlght

bitwise A

Left-to-Rlght exoluslve OR

bitwise I Left-to-Right Inoluslve OR

logloal AND && Left-to-Rlght

10gioalOR II Left-to-Rlght

oondltlonal ? . Right-to-Left .
assignment = += -= *= Right-to-Left

1= 0/0= »= «=
&= A =

oomma ,
Left-to-Rlght LOWEST

Table 5-1. Precedence and Associativity of C Operators.

www.manaraa.com

Operators and Expressions 121

5.1 Precedence and Associativity
All operators have two important properties associated with them called
precedence and associativity. Both properties affect how operands are
attached to operators. Operators with higher precedence have their op­
erands bound, or grouped, to them before operators of lower precedence,
regardless of the order in which they appear. For example, the multipli­
cation operator has higher precedence than the addition operator, so the
two expressions,

2 + 3 * 4
3 * 4 + 2

both evaluate to 14-the operand 3 is grouped with the multiplication op­
erator rather than the addition operator because the multiplication opera­
tor has higher precedence. If there were no precedence rules, and the
compiler grouped operands to operators in left-to-right order, the first
expression,

2 + 3 * 4

would evaluate to 20. Table 5-1 lists every C operator in order of prece­
dence.

In cases where operators have the same precedence, associativity (some­
times called binding) is used to determine the order in which operands
are grouped with operators. Grouping occurs in either right-to-left or
left-to-right order, depending on the operator. Right-to-Ieft as­
sociativity means that the compiler starts on the right of the expression
and works left. Left-to-right associativity means that the compiler starts
on the left of the expression and works right. For example, the plus and
minus operators have the same precedence and are both left-to-right as­
sociative:

a + b - c; /* add a to b, then subtract c */

The assignment operator, on the other hand, is right-associative:

a = b = c; /* assign c to b, then assign b to a */

www.manaraa.com

122 Chapter 5

5.1.1 Parentheses
The compiler groups operands and operators that appear within the pa­
rentheses first, so you can use parentheses to specify a particular grouping
order. For example:

/* subtract 3 from 2, then multiply that by 4 -­
* result is -4
*/

(2 - 3) * 4

/* multiply 3 and 4, then subtract from 2 -­
* result is -10
*/

2 - (3 * 4)

In the second case, the parentheses are unnecessary since multiplication
has a higher precedence than addition. Nevertheless, parentheses serve
a valuable stylistic function by making an expression more readable, even
though they may be redundant from a semantic viewpoint. It is a good
idea to enclose all but the simplest expressions in parentheses. This en­
sures that the expression is evaluated correctly, and it enables you and
others to decipher an expression without referring to the precedence ta­
ble.

In the event of nested parentheses, the compiler groups the expression
enclosed by the innermost parentheses first. Figure 5-1 shows how a
compiler might group and evaluate the expression:

1 + «3 + 1)/(8 - 4) - 5)

+ ({3+1) / (8 - 4) - 5)

/ ...

+ (4 / (8 -4) - 5)

/
+ (414- 5)

+ t1~5)
./

1/+4
-3

The innermost parentheses
are evaluated first. The
expressions (3 + 1) and
(8-4) are at the same
depth, so they can be
evaluated in either order.

Division has a higher
precedence than subtraction.

Final result.

Figure 5-1. Evaluation of an Expression Enclosed By Parentheses.

www.manaraa.com

Operators and Expressions 123

One way to evaluate expressions is to go through the process shown in
Figure 5-1, evaluating each sub expression in order. Another method
that many compilers use is to create a tree structure as shown in Figure
5-2. Each operator, called a node, points to its operands, called leaves.
The compiler evaluates the expression beginning at the bottom of the in­
verted tree. As each operator-operands combination is evaluated, the
result is placed in the operator node, becoming an operand for the opera­
tor at the next higher level.

Note that there are two sub expressions at the very bottom of the tree.
The compiler is free to evaluate them in any order-one compiler may
evaluate (3 + 1) first while another evaluates (8 - 4) first. This is true of
most operators, although there are a few for which the operands must be
evaluated in left-to-right order.

~
leaves

4/
Figure 5-2. Representation of an Expression as an Inverted Binary

Tree.

5.1.2 Order of Evaluation
An important point to understand is that precedence and associativity
have little to do with order of evaluation, another important property of
expressions. The order of evaluation refers to the actual order in which
the compiler evaluates operators. Note that this is independent from the
order in which the compiler groups operands to operators. For most

www.manaraa.com

124 Chapter 5

operators, the compiler is free to evaluate subexpressions in any order it
pleases. It may even reorganize the expression, so long as the reorgani­
zation does not affect the final result. For example, given the expression,

(2 + 3) * 4

the compiler might first add 2 and 3, and then multiply by 4. On the
other hand, a compiler is free to reorganize the expression into:

(2 * 4) + (3 * 4)

since this gives the same result.

The order of evaluation can have a critical impact on expressions that
contain side effects, as explained in Box 5-2. Moreover, reorganization
of expressions can sometimes cause overflow conditions. For this reason,
the ANSI Committee is considering new syntax that will enable program­
mers to suppress expression reorganization.

5.2 Unary Minus Operator

Operator Symbol Form Operation

unary minus - -x negation of x

Table 5-2. Unary Arithmetic Operators.

The minus operator is called a unary operator because it takes only one
operand. The operand can be any integer or a floating-point value. The
type of the result is the type of the operand after integral promotions.

The minus operator does just what you would expect-it returns the nega­
tion of its argument. If m equals 5, -m equals -5. On the other hand, if
m equals -5, -m equals 5. In short, the expression,

-e

is a shorthand for the expression:

o - (e)

where e is any integer or floating-point expression.

Do not confuse the unary minus operator with the binary subtraction op­
erator. Even though they use the same symbol, they are different opera­
tors. For example,

j = 3 - -x;

www.manaraa.com

Operators and Expressions 125

is interpreted as:

j = (3 - (-x»;

The first dash is a subtraction operator; the second is a unary minus sign.
Note that the space between the two dashes prevents them from being in­
terpreted as a decrement operator.

5.3 Binary Arithmetic Operators

Operator Symbol Form Operation

multiplication * x * y x times y
division I x / y x divided by y
remainder % x % y remainder of x divided

by y
addition + x + y x plus y
subtraction - x - y x minus y

Table 5-3. Binary Arithmetic Operators.

Most of the arithmetic operators should already be familiar to you. The
only new one is the remainder (%) operator. The multiplication, divi­
sion, and remainder operators are called multiplicative operators, and
have a higher precedence than the additive operators (addition and sub­
traction) . The operands to the multiplicative operators must be of inte­
gral or floating-point type. The additive operators accept operands
whose type is integral, floating-point, or pointer. All of the arithmetic
operators bind from left to right (see Table 5-1). Looking at the third
example in Table 5-4, note that the subexpression,

3/4

evaluates to zero because it is an integer expression-the fractional part of
the result is truncated.

Also note that if the right operand of a division expression is zero, the re­
sults are undefined.

www.manaraa.com

126 Chapter 5

Given the following declarations:

int m = 3, n = 4;
float x = 2.5, Y = 1.0;

Expression Equivalent Expression Result

m+n+x+y (((m + n) + x) + y) 10.5
m+x*n+y ((m + (x * n)) + y) 14.0
x/y+m/n (x / y) + (m / n) 2.5
x-y*m+y/n (x - (y * m)) + (y / n) -0.25
x / 0 x/O undefined

Table 5-4. Examples of Expressions Using Arithmetic Operators.

5.3.1 The Remainder Operator - 0/0
Unlike the other arithmetic operators, which accept both integer and
floating-point operands, the remainder operator (sometimes called the
modulus operator) only accepts integer operands. The resulting value is
the remainder of the first operand divided by the second operand. For
example, the expression,

9 % 5

has a value of 4 because 5 goes into 9 once with a remainder of 4. The
expression,

10 % 5

has a value of zero because 5 goes into 10 evenly. If either operand is
negative, the remainder can be negative or positive, depending on the im­
plementation (see Box 5-1). The ANSI Standard requires the following
relationship to exist between the remainder and division operators:

a equals a%b + (alb) * b for any integral values of a and b

As with division expressions, the result of a remainder expression is un­
defined if the right operand is zero.

A frequent application of the remainder operator is to perform some ac­
tion at regular intervals. The following program, for example, reads a
line of input and prints it out, inserting a newline after every five charac­
ters.

www.manaraa.com

Operators and Expressions

#include <stdio.h>

main()
{

int c, j = 0;

printf("Enter string to be squished: tI);

while «c = getchar(» != '\n')

}

{

}

if (j%5 == 0)
printf ("\n");

putchar (c);
j++;

exit (0);

/* if j goes into 5 evenly */

127

If this program were called breakline, execution would look like the fol­
lowing:

$ breakline
Needless redundancy is the hobgoblin ...

Needl
ess r
edund
ancy
is th
e hob
gobH
n ...

Note that the program outputs a newline at the very beginning. This is
because j is initialized to zero, and dividing any number into zero always
results in zero, with zero remainder.

To make this program more general and useful, you could turn it into a
function whose argument is the interval value. This improved function
appears on the following page.

www.manaraa.com

128

#include <stdio.h>

void break_line(interval
int interval;
{

int c, j = 1;

Chapter 5

while «c = getcharO) != '\n')
{

}
}

putchar(c);
if (j%interval 0)

printf("\n");
j++;

Note that in this version we initialize j to one rather than zero, and place
the putchar() function before the interval test. This prevents the func­
tion from outputting an initial newline. This function would be useful as
part of a text formatter that supports adjustable line lengths. A drawback
of this function, however, is that there is no provision against inserting a
newline in the middle of a word. We leave it as an exercise to correct
this deficiency.

5.4 Arithmetic Assignment Operators

Operator Symbol Form Operation

assign = a = b put the value of b into a
add-assign += a += b put the value of a+b into a
subtract-assign -= a -= b put the value of a-b into a
mUltiply-assign *= a *= b put the value of a" b into a
divide-assign 1= a /= b put the value of alb into a
remainder-assign 0/0= a %= b put the value of a%b into a

Table 5-5. Arithmetic Assignment Operators.

The assign operator (=) should be familiar. It causes the value of the
right-hand operand to be written into the memory location of the left­
hand operand. In addition, an assignment expression itself has a value,
which is the same value that is assigned to the left-hand operand. The
left-hand operand, sometimes called an lvalue, must refer to a memory
location.

www.manaraa.com

Operators and Expressions

Box 5-1: Bug Alert - Integer Division and
Remainder

When both operands of the division operator (I) are integer. the
result is an integer. If both operands are positive. and the divi ion
is inexact. the fractional part is truncated:

5/2
7/2
1/3

evaluates to
evaluates to
evaluates to

2
3
o

If either operand is negative. however. the compiler is free to
round the result either up or down:

-5/2
7/-2
-1/-3

evaluates to
evaluates to
evaluates to

-2 or -3
-3 or-4
o or - 1

By the same token. the sign of the result of a remainder operation
is undefined by the C Standard:

-5 % 2
7 % -4

evaluates to
evaluates to

1 or-1
3 or-3

Obviously, you should avoid division and remainder operation
with negative numbers since the results can vary from one compiler
to another. One way to avoid the sign problem during division is to
always cast the operands to float or double. Ever'l if the re ult is
assigned to an integer. you are guaranteed that the compiler will
convert to an integer by truncating the fractional part. For exam­
ple:

/* If j is an integer, it will be assigned the
* value -2.
*/

j = (float) 5 / -2;

Although this is a portable solution. it is expensive since it requires
the CPU to perform floating-point arithmetic.

The sign of the remainder is a more difficult problem to circum­
vent because the operands must be integer-you cannot ca t them
to float or double. If you always want the sign to be positive. you
can use the runtime library absO function, which returns the ab 0-

lute value of its argument:

/* Ensures that the value assigned to j is
* positive .
*/

j .. abs (k%m) ;

129

(cont inued)

www.manaraa.com

130 Chapter 5

Box 5-1 (continued):
If the sign of the remainder is important to your program's opera­
tions, you should use the runtime library div() function, which
computes the quotient and the remainder of its two arguments.
The sign of both results is determined in a guaranteed and portable
manner. (See the description of div() in Appendix A for more in­
formation.)

As mentioned previously, the assign operator has right-to-Ieft as­
sociativity, so the expression,

a = b = c = d = 1;

is interpreted as:

(a = (b = (c = (d = 1»»;
First 1 is assigned to d, then d is assigned to c, then c is assigned to b,
and finally, b is assigned to a. The value of the entire expression is 1.
This is a convenient syntax for assigning the same value to more than one
variable. Note, however, that each assignment may cause quiet conver­
sions, so,

int j;
double f;
f = j = 3.5;

assigns the truncated value 3 to both f and j. On the other hand,

j = f = 3.5;

assigns 3.5 to f and 3 to j.

In addition to the simple assign operator, the C language supports five ad­
ditional assignment operators that combine assignment with each of the
arithmetic operations. The equivalences are shown in Figure 5-3.

For example, the expression,

j = j * 5;

can be written:

j *- 5j

One of the main reasons for using the arithmetic assignment operators is
to avoid spelling mistakes and make code more readable. For example,
the expression,

op_big_x_dimension_3 = op_big_x_dimension_3 * 2;

www.manaraa.com

Operators and Expressions 131

can be written:

op_big_x_dimension_3 *= 2;

The second version is easier to read and to write, and contains fewer op­
portunities for spelling errors. This issue becomes even more important
when referencing structure and union members, as described in Chapter
8.

In addition, use of the arithmetic assignment operators sometimes pro­
duces more efficient object code. The increased efficiency is due to the
fact that some computers have special machine instructions to perform
arithmetic-assign combinations. A good compiler will usually rewrite an
expression for you to take advantage of this feature.

Another feature of the arithmetic assignment operators is that if the
Ivalue contains side effects, the side effects occur only once. This feature
has special significance for arrays, as explained in the next chapter. See
Box 5-2 for more information about side effects.

is the same as
a += b" ~a a + b

a -= b .. ~ a a - b

a *= b .. ~ a a * b

a /= b" .. a a / b

a %= b" ~ a a % b

Figure 5-3. Arithmetic Assignment Operator Equivalences. These
equivalences are true so long as a has no side-effects.

As shown in Table 5-1, the assign operators have relatively low prece­
dence. This leads to interesting consequences. For example, the follow­
ing two expressions are not the same:

j - j * 3 + 4;
j *= 3 + 4;

www.manaraa.com

132 Chapter 5

The addition operator has higher precedence than the assign operator,
and the multiplication operator has higher precedence than the addition
operator, so the two expressions are interpreted as follows:

j j * 3 + 4 j *= 3 + 4

1
j

!
*= (3

~
+ 4)

j «j * 3) + 4) j = (j * (3 + 4))

Table 5-6 gives some more examples of expressions using these opera­
tors.

Given the following declarations:

int m = 3, n = 4' ,
float x = 2.5, Y = 1.0;

Expression Equivalent Expression Result

m+=n+x-y m = (m + ((n + x) - y)) 8
m 1= x • n + y m = (m 1 ((x • n) + y)) 0
n %= y + m n = (n % (y + m)) 0
x += Y -= m x = (x + (y = (y - mIl) 0.5

Table 5-6. Examples of Expressions Using Arithmetic Assignment
Operators.

5.5 Increment and Decrement
Operators

In the previous chapter, we introduced the increment and decrement op­
erators as shorthands for adding 1 to and subtracting 1 from a variable.
As Table 5-7 indicates, there are actually two versions of each operator.
If the operator comes after the variable, it is called a postfix operator. If
it comes before the lvalue expression, it is called a prefix operator. The
difference between the two types of operators is subtle, but can be very
important, as we explain in this section.

www.manaraa.com

Operators and Expressions 133

Operator Symbol Form Operation

postfix Increment ++ a++ get value of a, then Increment a
postfix decrement -- a-- get value of a, then decrement a
prefix Increment ++ ++a Increment a, then get value of a
prefix decrement -- --a decrement a, then get value of a

Table 5-7. The Increment and Decrement Operators.

Like the unary minus operator, the increment and decrement operators
are unary. The operand must be a scalar lvalue-it is illegal to increment
or decrement a constant or a structure. It is legal to increment or decre­
ment pointer variables, but the meaning of adding one to a pointer is dif­
ferent from adding one to an arithmetic value. We describe pointer
arithmetic in the next chapter.

The postfix increment and decrement operators fetch the current value
of the variable and store a copy of it in a temporary location. The com­
piler then increments or decrements the variable. The temporary copy,
which has the variable's value before it was modified, is used in the ex­
pression. For example:

maine)
{

int j 5, k = 5;

printf("j: %d\t k: %d\n", j++, k--);
printf("j: %d\t k: %d\n", j, k);
exit (0);

}

The result is:

j: 5
j: 6

k: 5
k: 4

In the first printf() call, the initial values of j and k are used, but once
they have been used they are incremented and decremented, respec­
tively.

www.manaraa.com

134 Chapter 5

In contrast, the prefix increment and decrement operators modify their
operands before they fetch the values:

mainO
{

int j 5, k = 5;

printf("j: %d\t k: %d\n", ++j, --k);
printf("j: %d\t k: %d\n", j, k);
exit (0);

}

The result of this version is:

j: 6 k: 4
j: 6 k: 4

In many cases, you are interested only in the side effect, not in the result
of the expression. In these instances, it doesn't matter which operator
you use. For example, as a stand-alone assignment, or as the third ex­
pression in a for loop, the side effect is the same whether you use the
prefix or postfix versions:

x++;

is equivalent to:

++x;

and the statement,

for (j = 0; j <= 10; j++)

is equivalent to:

for (j = 0; j <= 10; ++j)

You need to be careful, however, when you use the increment and decre­
ment operators within an expression. Consider the rendition of the
break_line() function shown on the following page.

www.manaraa.com

Operators and Expressions

#include <stdio.h>

void break_line(interval
int interval;
{

int c, j=O;

while «c = getchar(» != '\n')
{

if «j++ % interval) 0)
printf("\n");

putchar(c);
}

}

135

This works because we use the postfix increment operator. If we were to
use the prefix increment operator, the function would break the first line
one character early.

5.5.1 Precedence of Increment and Decrement
Operators

Note in Table 5-1 that the increment and decrement operators have the
same precedence, but bind from right to left. So the expression,

--j++

is evaluated as:

--(j++)

This expression is illegal because j++ is not an Ivalue as required by the
-- operator. In general, you should avoid using multiple increment or
decrement operators together. Table 5-8 shows a number of expressions
involving increment and decrement operators.

Given the following declarations:
int j = 0, m = 1, n = -1;

Expression Equivalent Expression Result

m++ - --J (m++) - (--J) 2
m += ++J • 2 m = (m + ((++j) • 2» 3
m++ • m++ (m++) • (m++) Implementatlon-

dependent

Table 5-8. Examples of Expressions Using the Increment and
Decrement Operators.

www.manaraa.com

136 Chapter 5

Box 5-2: Bug Alert - Side Effects

The increment and decrement operators, and the assignment op­
erators. cause side effects. That is. they not only resul~ in a value.
but they change the value of a variable as well. A problem with
side effect operators is that it is not always possible to predict the
order in which the side effects occur. Consider the following state­
ment:

x ... j • j++;

The C language does not specify which multiplication operand is to
be evaluated first. One compiler may evaluate the left-hand oper­
and first, while another evaluates the right-hand operand first.
The results are different in the tw~ cases. If j equals 5. and the
left-hand operand is evaluated first, the expression will be inter­
preted as:

x .. 5 • 5; /* x is assigned 25 */

If the right-hand operand is evaluated first, the expression be­
comes:

x = 6 * 5; /* x is assigned 30 */

Statements such as this one are non-portable and should be
avoided. The side effect problem also crops up ih function calls
because the C language does not guarantee the order in which ar­
guments are evaluated. For example. the function call.

f(a, a++)

is not portable because compilers are free to evaluate the argu­
ments in any order they choose.

To prevent side effect bugs. follow this rule: If ¥ou use a side effect
operator in an expression, do not use the affected variable any­
where else in the expression. The ambiguous expression above. for
instance, can be made unambiguous by breaking it into two assign­
ments:

x - j * j;
++j;

www.manaraa.com

Operators and Expressions 137

5.6 Comma Operator

Operator Symbol Form Operation

comma , a , b evaluate a, evaluate b, result is b

Table 5-9. The Comma Operator.

The comma operator allows you to evaluate two or more distinct expres­
sions wherever a single expression is allowed. The result is the value of
the rightmost operand. The comma operator is one of the few operators
for which the order of evaluation is specified. The compiler must evalu­
ate the left-hand operand first.

Although the comma operator is legal in a number of situations, it leads
to confusing code in many of them. By convention, therefore, the
comma operator is used primarily in the first and last expressions of a for
statement. For instance:

for (j = 0, k = 100; k - j > 0; j++, k--);

In this example, both j and k are initialized before the loop is entered.
After each iteration, j is incremented and k is decremented. It is equiva­
lent to the following while loop.

j = 0;
k = 100;
while (k - j < 0)
{

}

j++;
k--;

Note that this code could also be written:

j = 0, k=100;
while (k - j < 0)
{

j++, k--;
}

www.manaraa.com

138 Chapter 5

Some programmers use the comma operator in this context, but we feel it
is better style to place each assignment on its own line to avoid confusion.

There is also a temptation to fit as much as possible into the for expres­
sions. For example, the break_line() function could be written:

#include <stdio.h>

break_line (interval
int interval;
{

int c, j;

for (c=getchar(), j = 0; c != EOF; c
put char (c), j++)

getchar(),

if (j%interval 0)
printf ("\n");

}

While this is more compact, it is not better since it is harder to read. In
particular, you should be wary about entering multiple assignments in the
third expression of a for loop.

5.7 Relational Operators

Operator Symbol Form Result

greater than > a > b 1 if a is greater than b; else 0
less than < a < b 1 if a is less than b; else 0
greater than or >= a >= b 1 if a is greater than or equal to

equal to b; else 0
less than or <= a <= b 1 if a Is less than or equal to b;

equal to else 0
equal to -- a -- b 1 if a is equal to b; else 0
not equal to != a != b 1 if a Is not equal to b; else 0

Table 5-10. The Relational Operators.

These operators should be familiar from the previous chapter. In this
chapter, we discuss some of the ramifications of the precedence and as­
sociativity rules when applied to these operators. Note first that all of
these operators have lower precedence than the arithmetic operators.
The expression,

a + b * c < d / f

www.manaraa.com

Operators and Expressions

is evaluated as if it had been written:

(a + (b * e» < (d / f)

Box 5-3: Bug Alert - Comparing Floating-Point
Values

139

It is very dangerous to compare floating-point values for equality
because floating-point representations are inexact for some num­
bers. For example, the following expression, though algebraically
true, will evaluate to false on most computers:

(1.0/3.0 + 1.0/3 . 0 + 1.0/3.0) == 1.0

This evaluates to 0 (false) because the fraction 1.0/3.0 contains an
infinite number of decimal places (3.33333 ...). The computer is
only capable of holding a limited number of decimal places, so it
rounds each occurrence of 113. As a result, the left-hand side of
the expression does not equal 1.0 exactly.

To avoid bugs caused by inexact floating-point representations,
you should refrain from using strict equality comparisons with
floating-point types .

Among the relational operators, the first four in Table 5-10 have the
same precedence. The == and != operators have lower precedence. All
of the relational operators have left-to-right associativity. Table 5-11 il­
lustrates how the compiler parses complex relational expressions.

Given the following declarations:

int j = 0, m "" 1, n = -1;
float x "" 2 . 5, Y "" 0 . 0;

Expression Equivalent Expressions

J>m
m I n < x

J>m
(m I n) < x

1 <= m >= n ((J <= m) >=n)
1 <= X == m ((J <= x) == m)
- x + J == v > n > m ((-x) + j) == ((v >'n) >= m)
x += (v >= n) x = (x + (v>= n)l
++1 == m 1 = V • 2 ((++j) == m) 1= (v • 2)

Table 5-11. Examples of Expressions UsIng the Relational
Operators.

Result

0 , , ,
0
3.5 ,

www.manaraa.com

140 Chapter 5

5.8 Logical Operators

Operator Symbol Form Result

logical AND && a && b 1 If a and b are non-zero; else 0

logical OR II a II b 1 If a or b Is non-zero; else 0

logical negation I I a 1 If a Is zero; else 0

Table 5-12. The Logical Operators.

In algebra, the expression,

x < y < z

is true if y is greater than x and less than z. Unfortunately, this expres­
sion has a very different meaning in C, since it is evaluated as:

(x < y) < z

The sub expression (x < y) is evaluated first and results in either 0 and 1.
So in C, the expression is true if x is less than y and z is greater than 1, or
if x is not less than y and z is greater than zero. To obtain the algebraic
meaning, you must rewrite the expression using relational operators.

The logical AND operator (&&) and the logical OR operator (II) evaluate
the truth or falseness of pairs of expressions. The AND operator returns
TRUE only if both expressions are TRUE. The OR operator returns
TRUE if either expression is TRUE. To test whether y is greater than x
and less than z, you would write:

(x < y) && (y < z)

The logical negation operator (!) takes only one operand. If the operand
is TRUE, the result is FALSE; if the operand is FALSE, the result is
TRUE:

Recall that in C, TRUE is equivalent to any non-zero value, and FALSE
is equivalent to zero. Table 5-13 shows the logical tables for each opera­
tor, along with the numerical equivalent. Note that all of the operators
return 1 for TRUE and 0 for FALSE.

www.manaraa.com

Operators and Expressions 141

Operand Operator Operand Result

zero && zero 0
non-zero && zero 0

zero && non-zero 0
non-zero && non-zero 1

zero II zero 0
non-zero II zero 1

zero II non-zero 1

non-zero II non-zero 1

I zero 1
NA I non-zero 0

Table 5-13. Truth Table for GiS Logical Operators.

The operands to the logical operators may be integers or floating-point
objects. The expression,

1 &&-5

results in 1 because both operands are non-zero. The same is true of the
expression,

0.5 && -5

Logical operators (and the comma and conditional operators) are the
only operators for which the order of evaluation of the operands is de­
fined. The compiler must evaluate operands from left to right. More­
over, the compiler is guaranteed not to evaluate an operand if it's unnec­
essary. For example, in the expression,

if «a != 0) && (b/a == 6.0»

if a equals zero, the expression (b/a == 6) will not be evaluated. This
rule can have unexpected consequences when one of the expressions
contains side effects (see Box 5-4).

www.manaraa.com

142 Chapter 5

Box 5-4: Bug Alert - Side Effects In Relational
Expressions

Relational operator (and the conditional and comma operators)
are the only operator for which the order of evaluation of the op­
erands is defined. For these operator, a compiler mu t evaluate
operands from left to right. However, a compiler evaluate only as
much of a relational expres ion a it needs to determine the re ull.
In many cases, this means that the compiler does not need to
evaluate the entire expression. For instance. consider the follow­
ing expres ion:

if «a < b) && (c =- d»

The compiler begin by evaluating (a < b). If a i not les than b.
the compiler know that the entire expression is false. so it will not
evaluate (c == d). This can cau e problem if orne of the expres­
sions contain ide effect :

if «a < b) && (c -- d++»

In this ca e, d is only incremented when a i Ie than b. This may
or may not be what the programmer intended. In general. you
should avoid using ide effect operator in relational expre ion.

Table 5-14 shows a number of examples that use relational and logical
operators . Note that the logical NOT operator has a higher precedence
than the others. The AND operator has higher precedence than the OR
operator. Both the logical AND and OR operators have lower prece­
dence than the relational and arithmetic operators .

Given the following declarations:

int j = 0, m = 1. n = -1;
float x = 2 . 5 , Y = 0.0;

Expression Equivalent Expression Result

1&& m (J) && (m) 0
1< m && n < m (J < m) && In < m) 1
m + n III I (m + n) II (Il) 1
x • 5 && 5 II m I n ((x· 5) && 5) II (m I n) 1
I <= 10 && x >= 1 && m ((J <= 10) && (x >= 1)' && m 1
Ix II In 11 m. n ((Ix) II (In)) II (m + n) 0
x·v<l·m ll n ((x· V) < (J + m), II n 1
Ix> V) • II II nH ((x> V) • (Ill) II (n..) 1
(j II m) + (x II Hn) (j II m) + (x II (Hn)) 2

Table 5-14. Examples of Expressions Using the Logical Operators.

www.manaraa.com

Operators and Expressions 143

A complex relational expression is normally used as the conditional part
of a looping statement, or in an if statement. Linking expressions with
the logical AND operator is equivalent to using nested if statements. The
expression,

if «a < b) && (b < e»
stmt;

is functionally equivalent to:

if (a < b)
if (b < e)

stmt;

This is true so long as there is no else present. However, the sequence,

if «a < b) && (b < e»
stmtl;

else
stmt2;

is not the same as:

if (a < b)

if (b < c)

stmtl;
else

stmt2;

To get the same functionality, you would have to write:

if (a < b)

if (b < c)

stmtl;
else

stmt2;
else

stmt2;

In situations that don't involve an else, you can use either form. Given
that you can write the expression either way, which should you use? The
relational expression is more maintainable because it is easy to add else
clauses at a later date. In terms of readability, the two versions are about
the same. The relational expression version is easier to read because it
groups all the necessary conditions together. It also avoids some of the
readability problems associated with deeply nested if statements. On the
other hand, relational expressions can themselves be difficult to read if
they become too long.

www.manaraa.com

144 Chapter 5

One way to decide whether a relational expression is too complex is to
employ the so-called "telephone test." This involves reading aloud the
relational expression. For instance, the previous example would be read
as "if a is less than band b is less than c." If you can understand the ex­
pression as you read it, then it passes the test, and you can use it. If, on
the other hand, you find yourself losing the thread, it is probably better to
break it up into nested expressions. Most important, you should be con­
sistent. If you like one style better than anQther, use it throughout your
programs. Don't switch back and forth.

5.9 Bit-Manipulation Operators
The bit-manipulation operations enable you to access specific bits within
an object, and to compare the bit sequences of pairs of objects. The op­
erands for all the bit-manipulation operators must be integers.

Operator Symbol Form Result

right shift » x » y x shifted right y bits

left shift « x « y x shifted left y bits

bitwise AND & x & y x bitwise ANDed with y

bitwise IncluslvEl OR I x I y x bitwise ORed with y

bitwise exclusive
A . x bitwise exclusive ORed with y x y

OR (XOR)

bitwise complement - -x bitwise complement of x

Table 5-15. The Bit-Manipulation Operators.

5.9.1 Shift Operators

The two shift operators, « and », enable you to shift the bits of an ob­
ject a specified number of places to the left or the right. The operands
must have integral type, and the automatic integral promotions are per­
formed for each operand. After these promotions, the right-hand op­
perand is converted to an into The type of the result is the type of the
promoted left-hand operand.

Consider the examples in Table 5-16 (these examples assume that an int
is 16 bits and that two's complement notation is used for negative num­
bers).

www.manaraa.com

Operators and Expressions 145

Expression Binary Model Binary Model Result
of Left Operand of Result Value

5« 1 00000000 00000101 00000000 00001010 10
255» 3 00000000 11111111 00000000 00011111 31
8« 10 00000000 00001000 00100000 00000000 2 13

1 «15 00000000 00000001 10000000 00000000 _2 15

Table 5-16. Examples Using the Shift Operators.

Shifting to the left is equivalent to multiplying by powers of two.

x «y is equivalent to x * 2Y

Shifting non-negative integers to the right is equivalent to dividing by
powers of two:

x »y is equivalent to x / 2Y

Note that as bits are moved to the right or left, the vacant bits are filled
with zeroes. This is the rule when a positive value is shifted. When a
negative value is shifted to the right, however, the vacant bits can be
filled with ones or zeroes, depending on the implementation, as shown in
Table 5-17.

Expression Binary Model Binary Model Result
of Left Operand of Result Value

-5» 2 11111111 11111011 00111111 11111110 213 -1

-5» 2 11111111 11111011 11111111 11111110 -2

Table 5-17. Shifting Negative Numbers. Some implementations fill
the vacant bits with zeroes, while others fill them with
ones.

www.manaraa.com

146 Chapter 5

The first version, in which vacant bits are filled with zeroes, is called a
logical shift. The second version is called an arithmetic shift because it
retains the arithmetic value. The ANSI Standard does not specify
whether a compiler should perform a logical or arithmetic shift for signed
objects. If the left operand is unsigned, however, the compiler must per­
form a logical shift. For example,

(unsigned) -5 » 2

always results in 213_1 on a machine where ints are 16 bits long. Use the
(unsigned) cast for portability. Also, make sure that the right operand is
not larger than the size of the object. For example, the following pro­
duces unpredictable and non-portable results because most ints have
fewer than 50 bits:

10 » 50

You will also get unpredictable results if the shift count (the second oper­
and) is a negative value.

5.9.2 Logical Bitwise Operators
The logical bitwise operators are similar to the Boolean operators, except
that they operate on every bit in the operand(s). For instance, the bit­
wise AND operator (&) compares each bit of the left operand to the cor­
responding bit in the right operand. If both bits are one, a one is placed
at that bit position in the result. Otherwise, a zero is placed at that bit
position.

When constants are used in expressions with bitwise operators, they are
usually written in hexadecimal notation to make it easier to see the value
of each bit. Each digit in a hexadecimal number represents four bits. By
memorizing the sixteen possible combinations (see Table 5-18), you can
quickly convert from binary to hexadecimal, and vice versa.

www.manaraa.com

Operators and Expressions 147

Decimal Hex Binary Octal

0 0 0000 0
1 1 0001 1
2 2 0010 2
3 3 0011 3
4 4 0100 4
5 5 0101 5
6 6 0110 6
7 7 0111 7
8 8 1000 10
9 9 1001 11
10 A 1010 12
11 B 1011 13
12 C 1100 14
13 0 1101 15
14 E 1110 16
15 F 1111 17

Table 5-18. Decimal, Hexadecimal, Binary, and Octal Versions of the
Integers Zero Through 15.

Table 5-19 shows some examples of the bitwise AND operator.

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010
9430 & 5722 Ox0452 00000100 01010010

Table 5-19. The Bitwise AND Operator.

The bitwise inclusive OR operator (I) places a 1 in the resulting value's
bit position if either operand has a bit set at the position (see Table
5-20).

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010

9430 I 5722 Ox36DE 00110110 11011110

Table 5-20. Examples Using the Bitwise Inclusive OR Operator.

www.manaraa.com

148 Chapter 5

The bitwise EXCLUSIVE OR (XOR) operator n sets a bit in the result­
ing value's bit position if either operand (but not both) has a bit set at the
position (see Table 5 - 21) .

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010

9430 A 5722 Ox328C 00110010 10001100

Table 5-21. Example Using the XOR Operator.

The bitwise complement operator (-) reverses each bit in the operand
(see Table 5-22).

Expression Hexadecimal Binary Representation
Value

9430 Ox24d6 00100100 11010110
-9430 Oxdb29 11011011 00101001

Table 5-22. Example Using the Bitwise Complement Operator.

The bit-manipulation operators are frequently used to implement a pro­
gramming technique called masking, which allows you to access a specific
bit or a group of bits. This is particularly useful for compressing informa­
tion. Suppose, for instance, that you have a test consisting of 32 yes/no
questions, Since each question has only two possible answers, you can
store the answer to each in a single bit. The answers for the entire test
can be stored in a 32-bit int, as shown below:

www.manaraa.com

Operators and Expressions

#include <stdio.h>

long get_answers()
{

}

long answers = 0;
int j;
char c;

for (j=0; j <= 31; j++)
{

scanf ("%c", &c);
if (c == 'y' II c 'Y')

answers 1= 1 « j;
}
printf("Answers entered
return answers;

149

(%lx) " , answers);

Note particularly how the correct bit is set for each yes answer. With
each iteration through the for loop, j is incremented, so the expression,

1 « j

moves the set bit one position to the left:

Value of j Value of 1 « j

0 00000000 00000000 00000000 00000001
1 00000000 00000000 00000000 00000010
2 00000000 00000000 00000000 00000100
3 00000000 00000000 00000000 00001000
4 00000000 00000000 00000000 00010000
5 00000000 00000000 00000000 00100000

By ORing this expression with answer, we can set all the bits that have an
answer of 'y' or 'Y'. For example if the test answers are,

y n n n y n y y n n y n y n y y y n y n n n y n y n y n n n y y

The bit pattern of answer will be:

1 000 1 0 1 100 1 010 1 1 101 0 0 0 1 0 1 0 1 000 1 1

www.manaraa.com

150 Chapter 5

This is one general use of the bitwise OR-to set one or more bits in an
object. Having arranged the bits in answer, we need a way to compare
answer to the correct answers. TIPs is accomplished with the exclusive
OR operator:

/*

*
*

correct answers are:
nnyy ynyn nyyy yynn nnyn yyyy ynyy nyny
0011 1010 0111 1100 0010 1111 1011 0101

*/

#define CORRECT_ANSWERS Ox3A7C2FB5

double grade_teste answers)
long int answers;
{

}

extern int count_bits();
long wrong_bits;
double grade;

wrong_bits = answers ~ CORRECT_ANSWERS;
grade = 100 * «32 - count_bits(wrong_bits » /

32.0) ;
return grade;

The XOR operator compares answers to CORRECT_ANSWERS, and sets
a bit in wrong_bits only when the operands differ. Hence, wrong_bits
has bits set for each wrong answer. To obtain the grade, we subtract the
number of wrong answers from the total to get the number of right an­
swers. Then we divide the number of right answers into the total. Fi­
nally, we multiply by 100. If there were ten wrong answers, for example,
the expression would be,

100 * «32.0 - 10) / 32.0)

which reduces to

100 * (22.0 / 32.0)

for a grade of 69.

We still need to write a count_bitsO function that counts the number of
bits set in wrong_answers. This function is similar to get_answersO, but
instead of using the OR operator to set bits, we use the AND operator to
read bits.

www.manaraa.com

Operators and Expressions

int count_bits(long_num
long int long_num;
{

}

int j, count = 0;

for (j = 0; j <= 31; j++)
if (long_num & (1 « j»

++count;
return count;

151

Now we can invoke all of these functions from a mainO function to form
an executable program:

#include <stdio.h>

mainO
{

}

extern double grade_test();
extern long int get_answers();
double grade;

printf("Enter the answers:\n");
grade = grade_test(get_answers());
printf(liThe grade is %3.0f\n", grade);
exit (0);

Note that the argument to grade_testO is itself a function. It is function­
ally the same as,

temp = get_answers();
grade = grade_test(temp);

but in the nested version, we do not need to declare a temporary variable
temp. This makes the function somewhat cleaner and more efficient.

The format specifier %3.0f directs printf() to output at least three digits
of the value, but to round the decimal digits.

If this program is called grade, typical execution, with three incorrect an­
swers, would look like the following:

($.:: grade
::::t.~t.g£:f;ij~::idi(@{e:t~;
ynynyynyyyyynynynnyyyyynnynnyyny

:~h~:::::g*-ad¢.::~:i.f}:~$·

A major drawback of this program is that it only works when there are
exactly 32 questions and answers. We leave it as an exercise to modify

www.manaraa.com

152 Chapter 5

the program so that it works for any number of questions, where the
number of questions and answers is entered by the user. (For more than
32 questions, you need to use an array, described in the next chapter.)

5.10 Bitwise Assignment Operators

Operator Symbol Form Operation

rlght-shlft-asslgn »= a »= b Assign a»b to a.
left-shlft-asslgn «= a «= b Assign a«b to a.
AND-assign &= a &= b Assign a&b to a.
OR-assign 1= a 1= b Assign alb to a.

XOR-assign ~ = a '= b Assign a~b to a.

Table 5-23. The Bitwise Assignment Operators.

The bitwise assignment operators are analogous to the arithmetic assign­
ment operators. For example, the assignment,

x = x « 2;

can be written:

x «= 2;

5.11 Cast Operator

Operator Symbol Form Operation

cast (type) (type) e Convert e to type.

Table 5-24. The Cast Operator.

We introduced the cast operator in Chapter 3. It enables you to convert
a value to a different type. One of the uses of casts, as we remarked in
Chapter 3, is to promote an integer to a floating-point number to ensure
that the result of a division operation is not truncated:

/* Result is 1 because fractional part is truncated
*/

3/2

/* Result is 1.5 because the 3 is converted to a
* float
*/

(float) 3 / 2

www.manaraa.com

Operators and Expressions 153

Note that the cast operator has very high precedence, so the preceding
expression is parsed as if it had been written:

«float) 3) / 2

Another use of the cast operator is to convert function arguments. Sup­
pose you want to write a program that prints the powers of 2 up to 232.
The runtime library function pow 0 will do the trick, but it expects its ar­
guments to be of type double. If your variables are integers, you need to
cast them to double before you pass them as arguments, as shown in the
example on the following page.

#include <stdio.h>
#include <math.h>

main()
{

}

int j;
long k;

for (j = 0; j < 32; j++)
{

}

k = (int) pow(2.0 , (double) j);
printf("%4d\t\t%13lu\n", j, k);

exit (0);

If we pass j without casting it to double, the program will fail. The powO
function is expecting a double object, and interprets whatever object is
passed as if it is a double. If the object being passed is actually an int,
you will get unpredictable results. (The ANSI Standard supports a new
syntax for declaring the types of arguments that makes this sort of cast
unnecessary. This syntax, called prototyping, is described in Chapter 9.)

The value returned by powO is a double, so we cast it to int before as­
signing it to j. This cast is actually unnecessary since the compiler auto­
matically converts right-hand expressions of an assignment. Neverthe­
less, the explicit cast serves an important documentation function by em­
phasizing that a conversion is taking place. We discuss argument-passing
conventions in more detail in Chapter 9.

The most frequent and important uses of casts involve pointers and data
intialization. We cover both of these topics in later chapters.

www.manaraa.com

154 Chapter 5

5.12 sizeof operator

Operator Symbol Form Operation

size of sizeof sizeof(t) Return the size, in bytes, of
or data type t or expression x.

sizeof x

Table 5-25. The sizeof Operator.

The sizeof operator accepts two types of operands: an expression or a
data type. However, the expression may not have type function or void,
or be a bit field (described in Chapter 8). Moreover, the expression it­
self is not evaluated-the compiler only determines what type the result
would be. Any side effects in the expression, therefore, will not have an
effect. The result type of the sizeof operator is either unsigned int or
unsigned long, depending on your compiler.

If the operand is an expression, sizeof returns the number of bytes that
the result occupies in memory:

/* Returns the size of an int (4 if ints are four
* bytes long)
*/

sizeof(3 + 5)

/* Returns the size of a double (8 if doubles are
* eight bytes long)
*/

sizeof(3.0 + 5)

For expressions, the parentheses are optional, so the following is legal:

sizeof x

By convention, however, the parentheses are usually included.

The operand can also be a data type, in which case the result is the
length in bytes of objects of that type:

sizeof(char) /* 1 on all machines */
sizeof(short) /* 2 on our machine */
sizeof(float) /* 4 on our machine */
sizeof(int *) /* size of a pointer to an integer

/* (4 bytes on our machines) */

The parentheses are required if the operand is a data type. Note that the
results of most sizeof expressions are implementation dependent. The
only result that is guaranteed is the size of a char, which is always 1.

www.manaraa.com

Operators and Expressions 155

In general, the sizeof operator is used to find the size of aggregate data
objects such as arrays and structures. This use of sizeof is discussed in
Chapters 6 and 8.

You can also use the sizeof operator to obtain information about the sizes
of objects in your C environment. The following, for example, prints the
sizes of the basic data types:

#include <stdio.h>

mainO
{

printf("TYPE\t\tSIZE\n\n");
printf("char\t\t%d\n", sizeof(char));
printi("short\t\t%d\n", sizeof(short));
printf("int\t\t%d\n", sizeof(int));
printt("float\t\t%d\n", sizeof(float));
printi("double\t\t%d\n" sizeof(double));
exit (0);

}

5.13 Conditional Operator (7 :)

Operator Symbol Form Operation

conditional 1: a ? b : c If a Is non-zero result Is b;
otherwise result Is c.

Table 5-26. The Conditional Operator.

The conditional operator is the only ternary (three operands) operator.
The conditional operator is really just a shorthand for a common type of
if ... else branch. The if ... else expression,

if (x < y)

z = x;
else

z = y;

can be written:

z = «x < y) ? x : y);

The first operand is the test condition. It must have scalar type. The
second and third operands represent the final value of the expression.
Only one of them is selected, depending on the value of the first

www.manaraa.com

156 Chapter 5

operand. The second and third operands can be of any data type, so
long as the two types are compatible according to the normal conversion
rules. For example, if the second operand is an int and the third is a
double, the result type is double regardless of which one is selected (i.e.,
if the int is selected, it is converted to a double).

The conditional operator is difficult to read and should be used with care.
In certain situations, however, it is handy. For example, in the following
statement, we print j if j is greater than zero; otherwise we print k:

printf("Here is %d", j > 0 ? j : k);

Without the conditional operator, this would have to be written:

if (j > 0)
printf("Here is %d" , j) ;

else
printf("Here is %d" , k) ;

We need to duplicate the print statement, which leads to redundant
code. The version using the conditional operator, therefore, is better in
this case.

5.14 Memory Operators
There are several operators that enable you to access and dereference
memory locations. We introduced some of them in Chapter 3, and we
list them all in this chapter (Table 5-27) for completeness, but we defer
discussing them in detail until Chapters 6 and 8.

Operator Symbol Form Operation

address of & &x Get the address of x.
dereference . *a Get the value of the object

stored at address a.
array elements [] x[5] Get the value of array

element 5.
dot x.y Get the value of member y

in structure x.
right-arrow -+ p -> Y Get the value of member y

in the structure pOinted to
by p.

Table 5-27. The Memory Operators.

www.manaraa.com

Operators and Expressions 157

Exercises
1. Enclose the following expressions in parentheses the way a C

compiler would evaluate them. (Hint: use Table 5-1):

a) a = b • c == 2;
b) a = f(x) && a > 100;
c) a == b && x 1= y;
d) a = b += 2 + f(2);
e) a = s . f + x . y;
f) a = b » 2 + 4;
g) a = b && a > z ? x = y : z;
h) a = • ++ • p;
i) a = b A C & d;

2. Suppose that you want to build a 4-byte long int out of four calls
to a routine called getbyteO which returns a one-byte value.
Write a single expression that represents such an integer, given
that the first call to getbyteO gets the high-order byte and the
next calls get subsequently lower-order bytes. Is your expression
portable? If not, is it possible to make it portable?

3. What is the output of the following program:

mainO
{

}

short i = 0;
printf("%d\n", (i + 1) * (i
exit(0);

1));

Is this program portable? Explain.

4. Which of the following printfO calls give a unique portable re­
sult?

mainO
{

}

printf ("%x\n", -0» 1);
printf ("%x\n", (unsigned) -0 » 1);
printf("%x\n", (long) 1 « 32);
exit (0);

www.manaraa.com

158 Chapter 5

5. Write a function called circular _shiite a, n), which takes a,
which is an unsigned long int, and shifts it left n positions,
where the high-order bits are reintroduced as low-order bits.
For example if the binary representation of a is

00010110 00111010 01110010 11100101

then the call

circular_shift(a, 5)

should return a long int whose binary representation is:

11000111 01001110 01011100 10100010

6. Using shift operators, determine the largest int value that your
computer can represent.

7. Write a function that accepts an int and prints its binary repre­
sentation. (Hint: use the sizeof operator to ensure that your
function works no matter how big an int is.)

8. Write a function that reads a number in binary form and converts
it to hexadecimal form.

9. Which of the following expressions are not portable? Why?

a) x++ * ++y
b) x = ++y - x++
c) x++ I (y - y)
d) -3/x * y
e) y = (unsigned) x » 4
f) y = x » 4
g) y »= x
h) foo(j++, j++)

10. Write a function called packO that accepts four chars and packs
them into a long into The function definition should be:

long int pack(a, b, c, d)
char a, b, c, d;

11. Modify the breakline 0 function so that it does not print a
newline in the middle of a word.

12. Modify the grade program so that it works with any number of
questions and answers less than or equal to 32. Have the user in­
put the number of answers.

www.manaraa.com

Chapter 6

Arrays and Pointers

"Curiouser and curiouser!" said Alice. - Lewis
Carroll. Alice in Wonderland

We have already introduced pointers as one of the scalar data types. In
this chapter. we examine them more closely and introduce an aggregate
type called an array. Arrays and pointers are closely related in C. To­
gether. they represent some of the most powerful features of the C lan­
guage and probably account. as much as anything. for C's popularity.

In C. an array is a collection of identically-typed variables stored con­
tiguously in memory.

Each variable in an array is called an element and can be accessed by giv­
ing the array name plus an index expression called a subscript. A sub­
script value of zero identifies the initial element. a value of 1 identifies
the next element. and so forth.

The most basic purpose of arrays is to store large amounts of related data
that share the same data type. Suppose that you want to analyze the
temperature fluctuations over the course of a year. To write such a pro­
gram. you first need to store the average temperature for each day. This
requires 365 memory locations. Obviously. it would be extremely tire­
some to declare 365 variables. each with a unique name. Arrays provide
a solution to this problem.

www.manaraa.com

160 Chapter 6

6.1 Declaring an Array
You declare an array by placing a pair of brackets after the array name.
To specify the size of an array, enter the number of elements within the
brackets. Figure 6-1 shows the syntax of an array declaration, where ar­
ray size is an integer expression. Array initializers are described in Sec­
tion 6.3.

Figure 6-1. Syntax of an Array Declaration.

For the array to hold temperatures, you can write:

int daily_temp [365] ;

This creates an array called daily_temp with 365 integer elements. You
can then enter the temperatures of each day with assignment statements,
such as:

daily_temp [0] 38;
daily_temp [1] 43;
daily_temp [2] 27;

The objects on the left side of the assignment expressions are called ar­
ray element references since they reference a single array element. Note
that subscripts begin at 0, not 1. The highest legal subscript, therefore, is
always one less than the array's size. For the dai/y_temp[J array, the last
element is dai/y_temp[364].

Because subscripts begin with zero, it is confusing to identify members
with words such as "first," "second," and "third." Does the "third" ele­
ment refer to the element with subscript 3 or subscript 27 To avoid this
confusion, we always refer to elements by their subscript number. Also,
the element with subscript ° is referred to as the initial element.

It may seem confusing to have arrays begin at ° instead of 1, but it re­
flects C's philosophy of staying close to the computer architecture. Zero

www.manaraa.com

Arrays and Pointers 161

is a much more natural starting point for computers, even though it may
be a bit more inconvenient for people. In other languages, such as FOR­
TRAN 77, arrays begin with subscript 1. While the FORTRAN method
may be more intuitive, it is often more costly because the compiler must
subtract 1 from each subscript reference to get the true internal address
of an element. The C method can produce more efficient code. Also, as
you will see later in this chapter, the C method makes it very easy to ac­
cess array elements through pointers.

It is important to keep in mind the difference between an array declara­
tion and an array element reference. Though they look the same, they
have different functions. In a declaration, the subscript defines the size
of the array. In an array element reference, the subscript determines
which element of the array is to be accessed. For instance:

/* This is a declaration -- the 4 specifies the
* number of elements in the array.
*/

int ar[4];

/* This is an array element reference -- the 2
* specifies the particular element to access.
*/

ar[2] = 0;

Returning to our daily temperature example, suppose we want to write a
program that gives us the average temperature for the year. To simplify
the problem, let us assume that you have already assigned temperature
values for every element in the array. The program could be written as
follows:

#include <stdio.h>
#define DAYS_IN_YEAR 365

mainO
{

int j, sum=O;
int daily_temp[DAYS_IN_YEAR];

/* Assign values to daily_temp[] here. */

for (j=O; j < DAYS_IN_YEAR; ++j)
sum +- daily_temp[j] ;

printf("The average temperature for the year is\
%d. \n" I sum/DAYS_IN_YEAR);

exit(0);
}

www.manaraa.com

162 Chapter 6

The variable j is used to subscript the array. After fetching an element
and adding it to sum, the function increments j so that the next element
can be accessed. When all 365 elements have been summed, the for
loop ends and the printf() function outputs the average.

6.2 How Arrays Are Stored in Memory
To see how arrays are stored in memory, consider the array ar which is
declared and assigned values by the following statements :

int ar[5]; /* declaration */
ar[O] = 15;
ar[l] = 17;
ar[3] = ar[O] + ar[l];

The storage for this array is shown in Figure 6-2. We show the array
starting at address 1000, but it could start anywhere in memory. The ac­
tual number of bytes allocated for each element depends on how large an
int is on your computer. Our machine allocates four bytes for an into

Element

arlO]

ar(1)

ar[2]

6r[3]

ar[4]

Memory

Contents Address
(in hex) 4-- 4 bytes ' ---I.~

/' /
~.:-"~

OFFC V.
1000 15 V

:::;:

1004 17 V
,.

1008 undefined /

100C 32 /
1010 undefined t
1014

.:-:

I

Figure 6-2. Storage of an Array.

Note that ar[2] and ar[4] have undefined values. This means that their
values are unpredictable. The contents of these memory locations are

www.manaraa.com

Arrays and Pointers 163

whatever is left over from the previous program execution. In the pro­
gramming world, undefined values are often called "garbage" or "trash,"
and they produce some of the most pesky bugs because they can cause
different results each time the program is executed. They may have
harmless values, such as zero, most of the time; yet in rare circum­
stances, they may acquire harmful values that cause the program to fail.
Frequently, these bugs are not noticed until after the product has been
shipped to customers, and the harmful values turn up at a customer site.
To avoid this type of bug, you can initialize arrays, as described in the
next section.

You can find the size in bytes of an array by using the sizeof operator.
For example, the expression,

sizeof(ar)

evaluates to 20 because the array consists of five 4-byte iots. Note that
you use the array name without a subscript reference to get the size of the
entire array. If you include a subscript, you get the size of a single ele­
ment. For example,

sizeof(ar[O])

evaluates to 4.

6.3 Initializing Arrays
To initialize an array prior to the ANSI Standard, you had to declare the
array outside of a function or precede the array declaration with the
static keyword (see Box 6-1). Both of these methods give the array a
quality called fixed duration, which is discussed in Chapter 7.

By default, arrays with fixed duration have all of their elements initialized
to zero. You can assign different initial values by enclosing specific val­
ues in braces following the array declaration. The values must be con­
stant expressions that can be automatically converted to the array type.
For example,

static int a_ar[5];
static int b_ar[5]={1, 2, 3.5, 4, 5};

results in the storage patterns shown in Figure 6-3. Note that the float­
ing-point 3.5 is converted to the integer value 3.

It is incorrect to enter more initialization values than there are elements
in the array; the compiler should report an error when you try. If you
enter fewer initialization values than elements, the remaining elements
are initialized to zero. The declaration,

www.manaraa.com

164

static int c_ar[5]={l,2,3};

results in the following initial values:

c_ar[O] 1
c_ar[l] 2
c_ar[2] 3
c_ar[3] 0
c_ar[4] 0

Memory

Element Address
(in hex)-

/':.,

OFFC

a_arlO]
1000

a_ar[1] 1004

a_ar[2] 1008

a_ar[3] 100C

8_8r[4] 1010

b_ar[O] 1014

b_ar[1] 1018

b_ar[2] 101C

b _ar[3] 1020

b_ar[4] 1024

1028

Contents
4 bytes

0

0

0

0

0

1

2

3

4

5

Figure 6-3 . Initialization of Arrays .

Chapter 6

1. :;::

%.
~t
~
t! :1-
Z
*-'
/ s
<-
i ~;
t;
j:

J
~f
::;:

~
)
[
Z

~
:::::

~

www.manaraa.com

Arrays and Pointers 165

When you enter initial values, you may omit the array size-the compiler
automatically figures out how many elements are. in the array based on
how many initial values are present. For instance,

static char d_ar[]={'a' , 'b' , 'c' , 'd'};

creates a four-element array of chars with initial values:

d_ar[O] , a'
d_ar[l] 'b'
d_ar[2] 'c'
d_ar[3] , d'

Box 6-1: ANSI Feature - Initialization of Arrays

Most older C compilers require an array to have fixed duration to
be initialized. This means that the declaration must occur outside
of a function or be preceded by the static keyword. The ANSI
Standard, however, permits automatic arrays to be initialized as
well. Automatic variables, described in detail in Chapter 7, are
variables declared within a function and without the static key­
word.

The rules for initializing automatic arrays are Similctr to the rules
for initializing fixed arrays. As with fixed arrays, the uninitialized
elements in an automatic array are initialized to zero. However, if
no initializer is present, none of the elements receive a default in­
itial value (as is the case with the old semantics). The initialization
values must be constant expressions.

Because this feature is not supported by many compilers, our ex­
amples are confined to the old syntax. If your compiler supports
initialization of dynamic arrays. however, you should use them
where applicable since they can produce more efficient code. The
next chapter describes the difference between fixed and dynamic
variables in greater detail.

www.manaraa.com

166 Chapter 6

6.4 Array Example: Encryption and
Decryption

Because computers are used to store all sorts of private information, a
great deal of effort goes into making them secure against intruders. On
large computer systems, every file has a protection status that controls
who can access the file and what they can do to it. Users, and sometimes
groups of users, have passwords that they must enter to log onto a com­
puter. These measures provide various ievels of protection, but none of
them give total security.

A more robust security technique is to encode files. Every character is
translated into a code character so that the file looks like gibberish to
someone who doesn't know the code. The following program illustrates a
simple encoding function that uses an array.

/* Return a coded value for a character
*/

#define ILLEGAL_VAL -1

char encode(ch)
char ch;
{

static unsigned char encoder [128] = { 127, 124,
121, 118, 115,112, 109, 106,103, 100, 97, 94, 91,

88, 85, 82, 79, 76, 73, 70, 67, 64, 61, 58, 55,
52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19,
16, 13,10, 7, 4, 1, 126, 123, 120, 117, 114, 111,

108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 75,
72, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39,
36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 125,

122, 119, 116, 113, 110, 107, 104, 101, 98, 95, 92,
89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56,
53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20,
17, 14, 11, 8, 5, 2, °

} ;

/* Test for illegal character. */
if (ch > 127)

}

return ILLEGAL_VAL;
else

return encoder [ch] ; /* Return coded character.*/

First we set up a 128-element array initialized with random numbers
from 0 through 127. Each element must have a unique value. Our array
initialization actually follows a simple pattern, but ideally the pattern

www.manaraa.com

Arrays and Pointers 167

should be harder to perceive. Real encoders use an algorithm to create
the translation array. The more complex the algorithm, the more diffi­
cult it is for would-be spies to break the code.

After initializing the array, we test the input argument to make sure that
it is a legal character (remember that unsigned char objects have a range
of 0 through 255). If ch is greater than 127, it is not a printable charac­
ter so we return -1 to signify an input error. If ch is less than or equal to
127, we use it as a subscript expression, and return the element refer­
enced by that subscript. For every value of ch from 0 through 127, there
is a unique translation code. If ch equals 0, for instance, the function re­
turns 127; if ch equals 1, the function returns 124. To see how it works,
consider the following program that invokes encode ().

#include <stdio.h>

MainO
{

}

char c[5];
int i;

c [0] encode ('W') ;

c [1] encode (, h') ;
c[2] encode('a');
c[3] encode('t');
c[4] encode('?');

for (i=O; i<5; ++i)
printf("%d\t", c[i]);

exit (0);

If your computer uses the ASCII representation of characters, program
execution results in the following:

w D y B

The phrase "What?" is coded as "wDY B" (the space between Y and B is
an unprintable character). If your computer uses some other form of
character representation, such as EBCDIC, the program will still work,
but it will print different characters. Anyone trying to read a file that
contains these encoded characters will be very confused, to say the least.
Of course, authorized readers need a decoder that has a reverse transla­
tion table to translate the file back to its original form.

www.manaraa.com

168 Chapter 6

6.5 Pointer Arithmetic
The C language allows you to add and subtract integers to and from
pointers. If p is a pointer, the expression,

p+3

is perfectly legal, meaning three objects after the object that p points to.
Since p holds an address, performing arithmetic on p generates a new ad­
dress value. However, rather than simply adding 3 to p, the compiler
multiplies the 3 by the size of the object that p points to. This is called
scaling.

Suppose, for example, that the address value held by p is 1000. If p is
declared as a pointer to a 4-byte long int, the 3 inp+3 is multiplied by 4.
The value ofp+3, therefore, is 1012. On the other hand, ifp is declared
as a pointer to a char, p+3 would equal 1003. In this way, the expression
p+3 always means 3 objects after p, regardless of the type of object thatp
points to.

6.5.1 Pointer Subtraction
It is legal to subtract one pointer value from another, provided that the
pointers point to the same type of object. This operation yields an inte­
gral value that represents the number of objects between the two point­
ers. If the first pointer represents a lower address than the second point­
er, the result is negative. For example,

&a[3] - &8[0]

evaluates to 3, but,

&8[0] - &8[3]

evaluates to -3.

It is also legal to subtract an integral value from a pointer value. This
type of expression yields a pointer value. The following examples illus­
trate some legal and illegal pointer expressions:

long *pl, *p2;
int j;
char *p3;

p2 = pl + 4;
j ,.. p2 - p1;
j = p1 - p2;
p1 = p2 - 2;
p3 = p1 - 1;
j = pl - p3;

/* legal */
/* legal j is assigned 4 */
/* legal J 1S assigned -4 */
/* legal compatible pointer types */
/* ILLEGAL different pointer types*/
/* ILLEGAL -- different pointer types*/

www.manaraa.com

Arrays and Pointers 169

6.5.2 Null Pointer

The C language supports the notion of a null pointer-that is, a pointer
that is guaranteed not to point to a valid object. A null pointer is any
pointer assigned the integral value zero. For example:

char *p;

p = 0; /* make p a null pointer */

In this one case-assignment of zero-you do not need to cast the integral
expression to the pointer type.

Null pointers are particularly useful in control-flow statements since the
zero-valued pointer evaluates to false, whereas all other pointer values
evaluate to true. For example, the following while loop continues iterat­
ing until p is a null pointer:

char *p;

while (p)

{

/* iterate until p is a null pointer */

}

This use of null pointers is particularly prevalent in applications that use
arrays of pointers, as described later in this chapter.

6.6 Passing Pointers as Function
Arguments

As we mentioned in Chapter 3, the compiler complains if you try to mix
different types of pointers. The one exception to this rule occurs when
you pass pointers as arguments. In the absence of function prototyping
(described in Chapter 9), the compiler does not check to make sure that
the type of the actual argument is the same as the type of the formal ar­
gument. If the types are different, strange behavior can result. The fol­
lowing program shows what can happen if you pass a pointer to one type,
but declare it as a pointer to a different type on the receiving side.

www.manaraa.com

170

#include <stdio.h>

void clr(p)
long *p;
{

Chapter 6

p = 0; / store a zero at location p. */
}

mainO
{

}

static short s[3] = {1, 2, 3};

clr(&s[l]); /* Clear element 1 of s[]. */
printf("s[0]=%d\ns[1]=%d\ns[2]=%d\n" , 5[0], 5[1],

5[2]);
exit (0);

First we assign the values 1,2, and 3 to s[O}, s[l}, and s[2}, respectively.
Then we send the address of element 1 to the clrO function, which sets
the element equal to O. The values of s [O}, s [1}, and s [2} should now be
1, 0, and 3. The output, however, is:

5[0]=1
5[1]=0
5[2]=0

The problem is that the pointer p in the clrO function is declared as a
pointer to a long integer. When zero gets assigned to the address of p,
four bytes are zeroed. s[l}, which is a short integer, is only two bytes
long, so two extra bytes get cleared. Because arrays are stored contigu­
ously in memory, the two extra bytes are the ones allocated for s [2}. Fig­
ure 6-4 shows what transpires. It is worth taking some time to under­
stand this example since it illustrates an important concept in the C lan­
guage.

www.manaraa.com

Arrays and Pointers 171

Before *p = 0: Memory

Variable Address Contents

{ 1000 00
s[O]

1001 01

{ 1002 00
s [1]

1003 02
.p is four

{ 1004 00 bytes long
s[2]

1005 03

2000 00

2001 00
P

2002 10

2003 02

After *p = 0:

{ 1000 00
s[O]

1001 01 --
{ 1002 00 Will

s[1] I 1003 00
.p is four

{ 1004 00 bytes long
s[2] i'l 1005 00

"..<'
2000 00 i 2001 00

p :{~::;;~:

2002 10 .;<::::::., --\i.=
2003 02 it :;.:;.-.

Figure 6-4. Passing the Wrong Pointer Type. Because p points to
a long int, four bytes are set to zero.

www.manaraa.com

172 Chapter 6

6.7 Accessing Array Elements Through
Pointers

One way to access array elements is to enter the array name followed by
a subscript. Another way is through pointers. The declaration~,

short ar[4];
short *p;

create an array of four variables of type short, called ar [OJ, ar [1 J, ar [2 J,
and ar [3 J, and a variable named p that is a pointer to a short. Using the
"address of" operator (&), you can now make the assignment,

p = &ar[O] ;

which assigns the address of array element 0 to p. If we dereference p,

*p

we get the value of element ar [OJ.

Until the value of p is changed, the expressions ar [OJ and • p refer to the
same memory location. Due to the scaled nature of pointer arithmetic,
the expression,

*(p+3)

refers to the same memory contents as:

ar[3]

In fact, for any integer expression e,

*(p+e)

is the same as:

ar[e]

This brings us to the first important relationship between arrays and
pointers: Adding an integer to a pointer that points to the beginning of an
array, and then dereferencing that expression, is the same as using the
integer as a subscript value to the array.

The second important relationship is that an array name that is not fol­
lowed by a subscript is interpreted as a pointer to the initial element of
the array. That is, the expressions,

ar

and

&ar[O]

www.manaraa.com

Arrays and Pointers 173

are exactly the same. Combining these two relationships, we arrive at the
following important equivalence:

ar[n] Is the same as * <ar + n)

This relationship is unique to the C language and is one of C's most im­
portant features. When the C compiler sees an array name, it translates
it into a pointer to the initial element of the array. Then the compiler in­
terprets the subscript as an offset from the base address position. For ex­
ample, the compiler interprets the expression ar [2 J as a pointer to the
first element of ar, plus an offset of 2 elements. Due to scaling, the off­
set determines how many elements to skip, so an offset of 2 means skip
two elements. The two expressions

ar[2]
* (ar+2)

are equivalent. In both cases, ar is a pointer to the initial element of the
array, and 2 is an offset that tells the compiler to add two to the pointer
value.

Because of this interrelationship, pointer variables and array names can
be used interchangeably to reference array elements. It is important to
remember, however, that the values of pointer variables can be changed
whereas array names cannot be changed. This is because an array name
by itself is not a variable-it refers to the address of the array variable.
You cannot change the address of variables. This means that a naked ar­
ray name (one without a subscript or indirection operator) cannot appear
on the left-hand side of an assignment statement. For instance:

float ar[5] , *p;

p = ar; /* legal -- same as p= &ar[O] */
ar p; /* illegal you may not assign */

/* to an array address */
&p ar; /* illegal you may not assign */

/* to a pointer address */
ar++; /* illegal -- you may not */

/* increment an array address */
ar [1] *(p+3); /* legal ar[l] is a variable */
p++; /* legal -- you may increment a */

/* pointer variable */

This difference between pointers and arrays is an important distinction to
grasp. We encounter this distinction again when we describe character
strings later in this chapter. In the above examples, note that scaling al­
lows you to use the increment and decrement operators to point to the
next or previous element of an array.

www.manaraa.com

174

6.8 Passing Arrays as Function
Arguments

Chapter 6

In C, an array name that appears as a function argument is interpreted as
the address of the first element of the array. For instance:

mainO
{

extern float func();
float x, farray[5];

x = func(farray); /* Same as func(&farray[O]) */

On the receiving side, you need to declare the argument as a pointer to
the initial element of an array. There are two ways to do this:

func(ar)
float *ar;
{

}

or

func(ar)
float ar[] ;
{

}

The second example declares ar to be an array of indeterminate size.
You may omit the size specification because no storage is being allocated
for the array. The array has already been created in the calling routine,
and what is being passed is really a pointer to the first element of the ar­
ray. Since the compiler knows that array expressions result in pointers to
the first element of the array, it converts ar into a pointer to a float, just
like the first declaration. Functionally, therefore, the two versions are
equivalent. In terms of readability, however, the second version may be
superior since it emphasizes that the object being passed is the base ad­
dress of an array. In the first version, there is no way of knowing
whether ar points to a single. float or to the beginning of an array of
floats.

www.manaraa.com

Arrays and Pointers 175

It is also legal to declare the size of the array in an argument declaration:

func(ar)
float ar[6];
{

}

However, the compiler uses the size information only for bounds-check­
ing (if the compiler supports this feature). (See Box 6-2 for more about
bounds-checking.) Also, you must specify all but the first dimension size
of a multi-dimensional array. This is described in Section 6.10.

The choice of declaring a function argument as an array or a pointer has
no effect on the compiler's operation (unless your compiler supports
bounds-checking)-it is purely for human readability. To the compiler,
ar simply points to a float-it is not an array. Because of the pointer-ar­
ray equivalence, however, you can still access ar as if it were an array.
But you cannot find out the size of the array in the calling function by us­
ing the sizeof operator on the argument. For example:

#include <stdio.h>

MainO
{

}

void print_size();
float f_array[lO];

printf ("The size of f_array is: %d\n",
sizeof(f_array));

print_size (f_array);
exit(0);

void print_size(arg)
float arg[];
{

printf("The size of arg is: %d\n", sizeof(arg));
}

On our computer, the results of running this program are:

The size of f_array is: 40
The size of arg is: 4

The variable f _array is an array of ten 4-byte floats, so the value 40 is its
correct size in bytes. The variable arg, on the other hand, is converted
to a pointer to a float. On our machine, pointers are four bytes long, so

www.manaraa.com

176 Chapter 6

the size of arg is 4. Because it is impossible for the called function to de­
duce the size of the passed array, it is often a good idea to pass the size
of the array along with the base address. This enables the receiving func­
tion to check array boundaries:

#define MAX_SIZE 1000

void foo(f_array, f_array_size);
float f_array[];
int f_array_size;
{

if (f_array_size > MAX_SIZE)
{

}

printf("Array too large.\n");
exit (1);

You can obtain the number of elements in an array by dividing the size of
the array by the size of each element. 'On the calling side, you would
write:

foo(f_array, sizeof(f_array)jsizeof(f_array[O]));

Note that this expression works regardless of the type of element inf_ar­
ray[].

6.9 Sorting Algorithms
Sorting a list of objects into alphabetical or numerical order is a common
programming operation and is a classic application of arrays. Although
the idea of sorting is simple enough, it turns out that the process can be
complicated. There are numerous sorting algorithms, and the mathe­
matical analyses for deciding which are the most efficient are the subject
of many lengthy volumes.

In this section, we show one of the simpler algorithms, called a bubble
sort. The idea behind a bubble sort is to compare adjacent elements,
starting with the first two, and interchange them if the first is larger than
the second. After comparing the first two elements, we compare the sec­
ond and third, then the third and fourth, and so on until we reach the
end of the array. Comparing all the adjacent pairs is termed a pass. If in
the first pass, we need to interchange any of the pairs, we need to make
another pass. We keep making passes until the array is in sorted order.

www.manaraa.com

Arrays and Pointers

Box 6-2: Bug Alert - Walking Off the End of an
Array

177

Unlike many programming languages. C does not require compil­
ers to check array bounds. (A few compilers include options that
let you check anyway.) This means that you can attempt to ac­
cess elements for which no memory has been allocated. The re­
sults are unpredictable. Sometimes you will access memory that
has been allocated for other variables. Sometimes you will attempt
to access special protected areas of memory and your programs
will abort. Usually this type of error occurs because you are off by
one in testing for the end of the array. For example. consider the
following program which attempts to initialize every element of an
array to zero:

MainO
{

}

int ar[lO]. j;

for (j-O; j <- 10; j++)
ar [j) - 0;

Since we have declared ar [J to hold ten elements. 'fe can validly
refer to elements 0 through 9. Our for loop. however. has an off­
by-one bug in it. The loop runs from 0 through 10. so element 10
also gets assigned zero. Since there is no element 10. the compiler
overwrites a portion of memory. very likely the portion of memory
reserved for j. This will produce an infinite loop because j will be
reset to zero.

You can avoid this type of error by keeping your functions small.
and testing each one after it is written. This way. you can catch
these bugs early before they become a major problem.

To see exactly what is happening we have added a couple of printjO
statements that show the current status of the array before each pass.

www.manaraa.com

178 Chapter 6

/* Sort an array of ints in ascending order using
* the bubble sort algorithm.
*/

#define FALSE 0
#define TRUE 1
#include <stdio.h>

void bubble_sort(list, list_size
int list[], list_size;
{

int j, k, temp, sorted
while (!sorted)
{

FALSE;

sorted = TRUE; /* assume list is sorted */

/* Print loop -- not part of bubble sort algorithm */
for (k = 0; k < list_size; k++)

printf("%d\t", list[k]);
printf ("\n");

/* End of print loop */

for (j = 0; j < list size -1; j++)
{

if (list[j] > list[j+1])
{

/* At least 1 element is out of order */
sorted = FALSE;

}

}

temp = list[j] ;
list [j] = list [j+1] ;
list[j+1] = temp;

} /* end of for loop */
} /* end of while loop */

The function accepts two parameters, a pointer to the first element of an
array of ints and an int representing the size of the array.

The following program calls bubble_sort() with a lO-element array.

www.manaraa.com

Arrays and Pointers

MainO
{

int i;
static int list[] { 13, 56, 23, 1, 89, 58,

20, 125, 86, 3};

179

bubble_sort (list, sizeof(list)/sizeof(list[O]»;
exit (0);

}

Note how we pass the riumber of elements in the array using the sizeof
operator. This is a useful technique in C because it is portable. We can
add new elements to the array, and the size of the array elements can
vary, but we never need to change the function call. Program execution
results in the following output:

13 56 23 1 89 58 20 125 86 3
13 23 1 56 58 20 89 86 3 125
13 1 23 56 20 58 86 3 89 125
1 13 23 20 56 58 3 86 89 125
1 13 20 23 56 3 58 86 89 125
1 13 20 23 3 56 58 86 89 125
1 13 20 3 23 56 58 86 89 125
1 13 3 20 23 56 58 86 89 125
1 3 13 20 23 56 58 86 89 125

The bubble sort is not very efficient, but it's a simple algorithm that illus­
trates array manipulation. The standard runtime library contains a much
more efficient sorting function called qsort(). We describe how to use
qsort() in Chapter 9.

6.10 Strings
One of the most common uses of arrays is to store strings of characters.
A string is an array of characters terminated by a null character. A null
character is a character with a numeric value of zero. It is represented in
C by the escape sequence: '\0'. A string constant, sometimes called a
string literal, is any series of characters enclosed in double quotes. It has
a data type of array of char, and each character in the string takes up
one byte. In addition, the compiler automatically appends a null charac­
ter to designate the end of the string.

www.manaraa.com

180 Chapter 6

6.10.1 Declaring and Initializing Strings
To store a string in memory, you need to declare an array of type char.
You may initialize an array of chars with a string constant. For example:

static char str[] = "some text";

The array is one element longer than the number of characters in the
string to accommodate the trailing null character. str [J, therefore, is ten
characters in length. If you specify an array size. you must allocate
enough characters to hold the string. In the following example, for in­
stance, the first four elements are initialized with the characters 'y'. 'e',
's', and '\0'. The remaining six elements receive the default initial value
of zero:

static char str[lO] = "yes";

The following statement, however, is illegal:

static char str[3] = "four"; /* illegal */

Some compilers, including those that conform to the ANSI Standard, al­
low you to specify an array size that does not include the trailing null
character. The following declaration causes the compiler to allocate four
characters, initialized to 'f', '0'. 'u', and'r':

static char str[4] = "four"; /* no trailing null */

You may also initialize a char pointer with a string constant. The decla­
ration,

char *ptr = "more text";

also creates an array of characters initialized with "more text". but it is
subtly different from the preceding declaration. Both declarations allo­
cate the same amount of storage for the string and initialize the memory
locations with the same values, but the pointer declaration creates an ad­
ditional 4-byte variable for the pointer (see Figure 6-5).

All subsequent uses of the array name refer to the address of the array's
initial element. This address. as we said before. cannot be changed. The
pointer is a variable that is initialized with the address of the array's in­
itial element. However, you can assign a different address value to the
pointer. In this case. the address with which it was initialized will be lost.

www.manaraa.com

Arrays and Pointers 181

Memory Memory
Element Address Contents Address Contents

OFFF 100A 'm'

str [0] 1000 's' 100B '0'

str [1] 1001 '0' 100C 'r'

str[2] 1002 'm' 1000 'e'

str [3] 1003 'e' 100E
, ,

,
str[4] 1004 ' , 100F 't'

str [5] 1005 't' 1010 'e'

str[61 1006 'e' 1011 'x'

str[7] 1007 'x' 1012 't' ,

str [81 1008 't' 1013 ' \ 0'

str [9] 1009 ' \ 0'

+-- 4 bytes---'

ptr 2000 I 100A I

Figure 6-5. Storage of a String.

6.10.2 String Assignments
The reason you can initialize a pointer with a string constant is because a
string is an array of chars, so C treats string constants like other arrays- it
interprets a string constant as a pointer to the first character of the string.

www.manaraa.com

182 Chapter 6

This means that you can assign a string constant to a pointer that points
to a char. However, you must be careful about allocating enough mem­
ory for the string, as shown below.

mainO
{

}

char array [10] ;
char *ptr1 = "10 spaces";
char *ptr2;

array = "not OK"; /* cannot assign to an address */
array [5] = 'A'; /* OK */
ptr1[5] = 'B'; /* OK */
ptr1 = "OK";
ptr1[5] = 'C';

*ptr2 = "not OK";
ptr2 = "OK";
exit (0);

/* questionable due to prior */
/* assignment */
/* type mismatch */

This example highlights many of the problems that beginners have with
pointers, arrays, and strings, so we'll discuss each assignment in detail.

array = "not OK";
array represents the address of the initial element of the array,
so it cannot be changed. Note, however, that the operand types
agree because the string "not OK" is interpreted as a pointer to
the first character, n.

array [5] = 'A';
This is a simple assignment to element 5 of the array [] array.

ptrl[5] = 'B';
ptr 1 is a pointer to a char that has been initialized to point to the
string" 1 0 spaces", which exists somewhere in memory. Because
of the pointer-array equivalence, this assignment changes the
value of element 5, so that ptr 1 now points to a string whose con­
tents are "10 spBces". Note that this assignment does not
change the value of ptr 1 .

ptr1 = "OK";
This assignment changes the value of ptr 1 so that it now points to
a string It OK", which exists somewhere else in memory.

www.manaraa.com

Arrays and Pointers 183

ptrl[5] = 'C';
Due to the prior assignment, ptr 1 points to a string whose con­
tents are "OK". Including the terminating null character, this
string takes up three bytes of memory. This assignment attempts
to assign a value to a memory location 3 bytes beyond the termi­
nating null character in "OK", thereby accessing memory whose
contents are unknown. This will not produce a compile-time er­
ror, but it will very likely produce a runtime error or erroneous
results.

*ptr2 = "not OK";
In this case, we are attempting to assign a value to the char
which ptr2 points to. The string is interpreted as the address of
the first character n, so this assignment is attempting to assign an
address value to a char. According to the ANSI Standard, this is
illegal - address values may be assigned only to pointer vari­
ables. Older compilers may accept this syntax, but they should at
least issue a warning.

ptr2 = "OK";
This assignment illustrates that you can assign a string to a char
pointer even if you have not initialized the pointer. There is no
difference between this statement and the statement:

ptrl = "OK";

6.10.3 Strings vs. Chars

It is important to recognize the difference between string constants and
character constants. In the following two declarations, one byte is allo­
cated for ch, but two bytes are allocated for the string "a" (an extra byte
for the terminating null character), plus additional memory is allocated
for the pointer ps.

char ch = 'a'; /* One byte is allocated for 'a' */

1* In the following declaration, two bytes are
* allocated for "a", plus an implementation-defined
* number of bytes are allocated for the pointer ps.
*/

char *ps = "a";

It is legal to assign a character constant through a dereferenced pointer:

*p = 'a';

www.manaraa.com

184 Chapter 6

But it is incorrect to assign a string to a dereferenced char pointer:

p = "a"; / INCORRECT */

Since a string is interpreted as a pointer to a char, and a dereferenced
pointer has the type of the object that it points to, this assignment at­
tempts to assign a pointer value to a char variable. This is illegal. By the
same token, it is legal to assign a string to a pointer (without dereferenc­
ing it), but it is incorrect to assign a character constant to a pointer:

p "a" ; / * OK * /
p 'a'; /* Illegal - p is a pointer, not a char. */

The last assignment attempts to assign a char value to a pointer variable.
An ANSI-conforming compiler should issue an error. Some older com­
pilers merely report a warning.

The crucial observation to be made is that initializations and assignments
are not symmetrical: You can write,

char *p = "string";

but not:

*p = "string";

Note that this is true of assignments and initializations of all data types,
not just character arrays. For instance:

float f;
float *pf = &f; /* OK */

pf = &f; / ILLEGAL */

6.10.4 Reading and Writing Strings

You can read and write strings with the printf() and scanf() functions by
using the %s format specifier. For scanf() , the data argument should be
a pointer to an array of characters that is long enough to store the input
string. The input string is terminated by any space character. After
reading in the input characters, scanf() automatically appends a null
character to make it a proper string. On the printf() side, the data argu­
ment should be a pointer to a null-terminated array of characters.
printf() outputs successive characters until it reaches a null character.
The following program reads a string from the standard input device and
then prints it out ten times.

www.manaraa.com

Arrays and Pointers

#include <stdio.h>
#define MAX_CHAR 80

MainO
{

}

char str[MAX_CHAR];
int i;

printf(" Enter a string: ");
scanf("%S", str);
for (i = 0; i < 10; ++i)

printf("%s\n", str);
exit(0);

185

Note that we can use the array name as the data argument because a na­
ked array name is really a pointer to the initial element of the array. One
drawback of this program is that it can fail if the input string is more than
MAX_CHAR characters. We leave it as an exercise to the reader to re­
move this deficiency.

In addition to printfO and scanfO, the C runtime library contains many
functions that manipulate strings. In this section, we show some sample
source code for a few of them to illustrate some of the concepts behind
arrays and pointers.

6.10.5 The String Length Function
Probably the simplest string function is strlen 0, which returns the num­
ber of characters in a string, not including the trailing null character. U s­
ing arrays, strlen 0 can be written:

int strlen(str)
char str[];
{

}

int i=O;
while (str[i])

++i;
return i;

We test each element of str, one by one, until we reach the null charac­
ter. If str[iJ is the null character, it will have a value of zero, making the
while condition false. Any other value of str[iJ makenhe while condi­
tion true. Once the null character is reached, we exit the while loop and
return i, which is the last subscript value and. conveniently. the length of
the string.

www.manaraa.com

186 Chapter 6

You could also write the function using a for statement instead of a while
statement:

int strlen(str)
char str[];
{

int i;
for (i=O; str[i]; ++i)

/* null statement in for body */
return i;

}

The pointer version of strlen() would be:

int strlen(str)
char *str;
{

}

int i;

for (i = 0; *str++; i++)
/* null statement */

return i;

The expression,

*str++

illustrates a common idiom in C. Since the ++ operator has the same
precedence as the * operator, associativity rules take effect. Both opera­
tors bind from right to left, so the expression causes the compiler to:

1. Evaluate the post-increment (++) operator. Because ++ is a
post-increment operator, the compiler passes str to the next op­
erator, but makes a note to increment str after the entire expres­
sion is complete.

2. Evaluate the indirection (*) operator, applied to str.

3. Complete the expression by incrementing str.

www.manaraa.com

Arrays and Pointers 187

Box 6-3: ANSI Feature - String Concatenation

The ANSI Standard states that two adjacent string literals will be
concatenated into a single null-terminated string. For example.
the statement,

print!("one .. " "two ... " "three\n");

is treated as if it had been written:

printf ("one .. two ... three\n");

Note that the terminating null characters of the string(s) are not
included in the concatenated string. This feature is particularly
useful with regard to macros that expand to string literals. as de­
scribed in Chapter 10. String concatenation can also be used to
break up long strings that would otherwise require the continuation
character. For example. the statement.

printf("This is a very long string that\
cannot fit on one line\n");

can be written:

printf("This is a very long string that"
"cannot fit on one line\n");

As this example illustrates. string concatenation (combined with
the fact that the compiler ignores the spaces between tokens) gives
you greater formatting flexibility .

6.10.6 String Copy Function
The following function, called strcpy(). copies a string from one array to
another.

void 5trcpy(51, 52)
char 51 [], 52 [] ;
{

}

int i;

for (i=O; 51[i]; ++i)
52 [i] 51 [i] ;

52[++i] = '\0';

www.manaraa.com

188 Chapter 6

Note that we need to explicitly append a null character because the loop
ends before the terminating null character is copied. Note also that we
must use the prefix increment operator in the expression:

s2[++i]

We can rewrite this function using pointers as follows:

void strcpy(sl, s2)
char *sl, *s2;
{

}

int i;

for (i=O; *(Sl+i); ++i)
*(s2+i) = *(sl+i);

s2[++i] = '\0';

Due to the array-pointer relationship described earlier, your compiler
should produce exactly the same code for both the array and pointer
versions. The choice of which version to use, therefore, revolves around
readability. We feel that the array version is more straightforward. Al­
though both versions are perfectly fine and will work correctly, a superior
version that runs faster on most machines is the following:

void strcpy(sl, s2)
char *sl, *s2;
{

while (*s2++ = *sl++)
; /* null statement */

}

This version utilizes just about all of the shortcuts that C provides. In­
stead of adding an offset to the string pointer, we just increment it with
the post-increment operator. The result of the assignment is used as the
test condition for the while loop. Remember that even an assignment ex­
pression has a value. If * s 2 equals zero (which it will on the terminating
null character), the entire assignment expression will equal zero, and the
while loop will end. By using the assignment expression as the test con­
dition, we no longer need an extra statement to assign the terminating
null character. Note that we use a postfix increment operator instead of
a prefix operator. If we used ++ before the variable

(*(++sl»

the function would not work because it would always skip the initial ele­
ment.

www.manaraa.com

Arrays and Pointers 189

We say this version is "superior," but perhaps we should qualify this
term. This version is superior in the sense that it produces the most
efficient machine code. At first blush, it may seem less readable than
our first version because so many things are happening at once. To an
experienced C programmer, however, it is more readable because sea­
soned C programmers are familiar with the techniques being used. Very
often, there is a give-and-take relationship between readability and effi­
ciency. The decision as to which quality is more important depends to a
large degree on your application and your resources. If you have unlim­
ited CPU power and memory, the question of efficiency should take a
backseat to readability. If it is important that your program runs fast and
occupies a small amount of memory, you may have to make some sacri­
fices to readability. The efficient version of strcpy 0 illustrates the power
and elegance of the C language. Do not be discouraged, though, if you
feel uncomfortable with this version. Like any foreign language, the C
language is full of idioms that take time to learn.

6.10.7 Pattern Matching
The next program is a pattern-matching function. Though not part of
many C libraries, this is nevertheless a common and useful function. (In
the ANSI C runtime library, this function is called strstrO, but we call it
pat_match 0) . It accepts two arguments, both pointers to character
strings. It then searches the first string for an occurrence of the second
string. If it is successful, it returns the byte position of the occurrence; if
it is unsuccessful, it returns -1. For example, if the first string is: "Every­
body complains about the weather but nobody ever does anything about
it", and the second string is "the weather" , the function would return 26
because "the weather" starts at element 26 of the first string.

www.manaraa.com

190 Chapter 6

#include <stdio.h>

/* Return the position of str2 in str1; -1 if not
* found.
*/

int pat_match(str1, str2)
char str1[], str2[];
{

int j, k;

for (j=O; j < strlen(str1); ++j)
{

/* test str1[j] with each character in str2[]. If
equal, get next char in str1[]. Exit loop if we
get to end of str1[], or if chars are equal.

*
*
*/

for (k=O; (k < strlen(str2) && (str2[k] ==
str1[k+j]»; k++);

/* Check to see if loop ended because we arrived at
* end of str2. If so, strings must be equal.

}

*/

}

if (k == strlen(str2 »
return j;

return -1;

There are two loops, one nested within the other. The outer loop incre­
ments j until it reaches the end of str 1. The inner loop compares the
current character in str 1 with the first character in str2. If they are
equal, it tests the next character in each string. The loop ends either
when the characters in the two strings no longer match or when there are
no more characters in str2. If the loop ends because there are no char­
acters left, the strings match and we returnj, which, is the byte position in
str 1. If the loop ends because the strings do not match, we jump back to
the outer loop and test the next character in str 1. If we reach the end of
str 1 without a match, we return -1.

The value -1 is convenient as a failure indicator because there is no pos­
sibility of ambiguity. If the pattern match is successful, a non-negative
number will be returned. You will find that most functions in the C li­
brary return either -lor 0 as a failure signal. In this example, we cannot
return 0 for failure because 0 will be returned if the pattern match is suc­
cessful on the initial element of str2.

www.manaraa.com

Arrays and Pointers 191

The pat_match() function has a serious flaw. It calls strlen() with each
iteration of the for loop. This is a waste of computer cycles since the
string length never changes. We can remove this problem by storing the
string length in a variable:

#include <stdio.h>

/* Return the position of str2 in str1; -1 if not
* found.
*/

pat_match (str1, str2
char str1[], str2[];
{

int j, k' ,
int lengthl strlen(
int length2 strlen(

for (j=O; j < length1;
{

str1) ;
str2) ;

++j)

for (k=O; k < length2; k++)
if (str2[k] != str1[k+j)

break;
if (k == length2)

return j;
}
return -1;

}

This second version requires two extra variables, but the savings in CPU
effort are well worth the extra memory allocation. An even more effi­
cient version of this function is shown below. Again, while it is more effi­
cient, it may be less readable to you. However, the more programs you
see that use these idioms and shortcuts, the more readable they will be­
come.

www.manaraa.com

192 Chapter 6

/* Return the first occurrence of str2 in str1 using
* pointers instead of arrays; return -1 if no match
* is found.
*/

pat_match (str1, str2
char *str1,"*str2;
{

char *p, *q, *substr;

/* Iterate for each character position in str1 */
for (substr = str1; *substr; substr++)

{
p = substr;
q = str2;
/* See if str2 matches at this char position */
while (*q)

if (*q++ != *p++)
goto no_match;

/* Only arrive here if every char in str2 matched.
* Return the number of characters between the
* original start of str1 and the current character
* position by using pointer subtraction.
*/

return substr - str1;

/* Arrive here if while loop couldn~t match str2.
* Since this is the end of the for loop, the
* increment part of the for will be executed
* (substr++), followed by the check for
* termination (*substr), followed by this loop
* body. We have to use goto to get here because
* we want to break out of the while loop and
* continue the for loop at the same time. Note
* that the semicolon is required after the label
* so that the label prefixes a statement (albeit a
* null one).
*/

no_match:
}

/* We arrive here if we have gone through every
* character of str1 and did not find a match.
*/
return -1;

}

www.manaraa.com

Arrays and Pointers 193

To show how to use pat_match(), we need to write a main() routine that
reads in a string and a pattern to be matched. However, we can't use
scanf() and %8 because scanf() stops assigning characters to the array as
soon as a space character is encountered. If a string or pattern contains
a space. the program won't work. Fortunately. there is another runtime
routine. called gets(), that reads a string from your terminal (including
spaces) and assigns the string to a character array. The gets() function
takes one argument. which is a pointer to the character array. Charac­
ters are read from the terminal until a linefeed or end-of-file is encoun­
tered. When you use this function. be sure to make your character array
large enough to hold the longest possible input string. The following ex­
ample shows how we might call pat_matchO.

#include <stdio.h>

main()
{

char first_string[lOO] • pattern[lOO];
int pos;

printf ("Enter str: ");
gets(first_string);
printf("Enter pattern to be matched: ");
gets(pattern);
pos = pat_match(first_string. pattern);
if (pos == -1)

printf("The pattern was not matched.\n");
else

printf("The pattern was matched at position\
%d\n". pos);

exit(0);
}

A typical execution of the program would be:

........................ ;.:.:.::

::~##,#/:#.¥;:::~:r?R~?t:J1o~t().be. that is the question.

:j:i*~~i;~;~£~;~~~0~~;dh:~0~t068~i=t~dri.:i3
The first "To be" is not matched because the "T" is capitalized: the pat­
tern matching function is case sensitive.

www.manaraa.com

194 Chapter 6

6.10.8 Additional String Functions
In addition to the string functions listed above, there are many other use­
ful string functions in the Standard Library (see Table 6-1). See Appen­
dix A for a more complete description of each one.

strcpyO

strncpyO

strcatO

strncat()

strcmp()

strncmpO

strchrO

strcspnO

strpbrk()

strrchrO

strspnO

strstrO

strtokO

strerrorO

strlenO

Copies a string to an array.

Copies a portion of a string to an array.

Appends one string to another.

Copies a portion of one string to another.

Compares two strings.

Compares two strings up to a specified number
of characters.

Finds the first occurrence of a specified char­
acter in a string.

Computes the length of a string that does not
contain specified characters.

Finds the first occurrence of any specified
characters in a string.

Finds the last occurrence of any specified char­
acters in a string.

Computes the length of a string that contains
only specified characters.

Finds the first occurrence of one string embed­
ded in another.

Breaks a string into a sequence of tokens.

Maps an error number with a textual error
message.

Computes the length of a string.

Table 6-1. String Functions in the Standard Library.

www.manaraa.com

Arrays and Pointers 195

6.11 Multidimensional Arrays
An array of arrays is a multidimensional array and is declared with con­
secutive pairs of brackets. For instance:

/* In the following, x is a 3-element array of
* 5-element arrays.
*/

int x [3] [5] ;

/* In the following, x is a 3-element array of
* 4-element arrays of 5-element arrays.
*/

char x [3] [4] [5] ;

Although a multidimensional array is stored as a one-dimensional se­
quence of elements, you can treat it as an array of arrays. For example,
consider the following 5x5 "magic square." It is called magic because the
rows, columns, and diagonals all have the same sum.

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

To store this square in an array, we could make the following declaration:

static int magic [5] [5] = { {17 , 24 1 8 , 15 } ,
{23 , 5 , 7 14 , 16 } ,
{ 4 , 6 , 13 , 20 , 22 } ,
{10 , 12 , 19 , 21 , 3 } ,
{ll , 18 , 25 , 2 , 9 }

} ;

In the initialization, each row of valt!.es is enclosed by braces.

www.manaraa.com

196 Chapter 6

To access an element in a multidimensional array, you specify as many
subscripts as are necessary. Multidimensional arrays are stored in row­
major order, which means that the last subscript varies fastest. For ex­
ample, the array declared as

int ar[2] [3]={ { 0, 1, 2 },
{ 3, 4, 5 }

} ;

is stored as shown in Figure 6-6.

Memory

Element Address
(in hex)

arlO] [0] 1000

ar[0](1] 1004

arlO] [2] 1008

ar[1] [0] 100C

ar[1](1] 1010

ar[1](2] 1014

1018

Contents

/' ~--------------~1 o Z
~----------------~f

1 t

2

3 i:
~-----------------Ij:::

I~
t-------------------f~~:

:~;:

~
~-----------------li t

~
~-----------------'

4

5

Figure 6-6. Storage of a Multidimensional Array.

The array reference

ar [1] [2]

is interpreted as

* (ar [1] + 2)

which is further expanded to:

((ar+l)+2)

www.manaraa.com

Arrays and Pointers 197

Recall that ar is an array of arrays. When· (ar+l) is evaluated, there­
fore, the 1 is scaled to the size of the object, which in this case is a 3-ele­
ment array of ints (which we assume are four bytes long), and the 2 is
scaled to the size of an int:

*(int *)((char *)ar + (1*3*4» + (2*4»

We put in the (char .) cast to turn off scaling because we have already
made the scaling explicit. The (int .) cast ensures that we get all four
bytes of the integer when we dereference the address value. After doing
the arithmetic, the expression becomes:

*(int *) ((char *)ar + 20)

The value 20 has already been scaled so it represents the number of bytes
to skip. If ar starts at address 1000, as in our picture, ar[l] [2] refers to
the int that begins at address 1014 (hex value), which is 5.

If you specify fewer subscripts than there are dimensions, the result is a
pointer to the base type of the array. For example, given the two dimen­
sional array declared above, you could make the reference,

ar[1]

which is the same as:

&ar [1] [0]

The result is a pointer to an into

The ANSI Standard places no limits on the number of dimensions an ar­
ray may have, although implementations may impose a limit. They are
required, however, to support at least six dimensions.

6.11.1 Initializing a Multidimensional Array
When initializing a multidimensional array, you may enclose each row in
braces. If there are too few initializers, the extra elements in the row are
initialized to zero. Consider the following example:

static int examp[5] [3] = { { 1 , 2 , 3 }.
{ 4 }.
{ 5 • 6 , 7 } };

This example declares an array with five rows and three columns, but
only the first three rows are initialized, and only the first element of the
second row is initialized. Pictorially, this declaration produces the follow­
ing array:

123
400
567
000
000

www.manaraa.com

198

If we do not include the inner brackets, as in:

static int examp[5] [3] = { 1 , 2 , 3 ,
4

the result is:

123
456
700
000
000

5 , 6 , 7 };

Chapter 6

Obviously, the initializer in this example is very misleading. To enhance
readability and clarity, you should always enclose each row of initializers
in its own set of braces, as we did in the first example.

As with one-dimensional arrays, if you omit the size specification of a
multidimensional array, the compiler automatically determines the size
based on the number of initializers present. In the case of multidimen­
sional arrays, however, it is important to remember that you are really
declaring an array of arrays. That is, you are declaring an array where
each element is itself an array. You may omit the number of elements in
the outermost array you are declaring because the compiler can fiugre
this out base on the number of initializers present. From a syntactic
point of view, this means that you may only omit the first size specifica­
tion, but you must specify the other sizes. For example,

static int a_ar[] [3] [2] = {{{1, 1}, {O,O}, {1,1}},
{{O, A}, {1,2}, {O,l}}

}

results in a 2-by-3-by-2 array because there are tweive initializers. Each
element in the array a_ar is itself a 3-by-2 array. If we added another
initializer, the compiler would allocate space for a 3-by-3-by-2 array,
initializing the extra elements to zero. The following declaration is illegal
because the compiler has no way of knowing what shape the array should
be:

/* ILLEGAL
*/

static int b_ar[] [] = { 1, 2, 3, 4, 5, 6 };

Should the compiler create a 2-by-3 array or a 3-by-2 array? There's
no way to tell. However, if you specify the size of each array other than
the first, the declaration becomes unambiguous.

www.manaraa.com

Arrays and Pointers

Box 6-4: Bug Alert - Referencing Elements in a
Multidimensional Array

199

One of the most common mistakes made by beginning C program­
mers-especially those familiar with another programming lan­
guage-is to use a comma to separate subscripts,

ar[l,2] = 0; /* Legal, but probably wrong */

instead of:

ar[l] [2] = 0; /* Correct */

The comma notation is used in some other languages, such as
FORTRAN and Pascal. In C, however, this notation has a very
different meaning because the comma is a C operator in its own
right. The first statement above causes the compiler to evaluate
the expression 1 and discard the result; then evaluate the expres­
sion 2. The result of a comma expression is the value of the right­
most operand, so the value 2 becomes the subscript to ar. As a re­
sult, the array reference accesses element 2 of ar.

If ar is a two-dimensional array of ints, the type of ar{2} is a
pointer to an int, so this mistake will produce a type incompatibil­
ity error. This can be misleading since the real mistake is using a
comma instead of brackets.

6.11.2 Passing Multidimensional Arrays as
Arguments

To pass a multidimensional array as an argument, you pass the array
name as you would a single-dimension array. The value passed is a
pointer to the initial element of the array, but in this case the initial ele­
ment is itself an array. On the receiving side, you must declare the argu­
ment appropriately, as shown in the example on the following page.

www.manaraa.com

200

flO
{

in t ar [5] [6] [7] ;

f2 (ar);

}

f2(received_arg)
int received_arg[] [6] [7];

{

}

Chapter 6

Again, you may omit the size of the array being passed, but you must
specify the size of each element in the array. Most compilers don't
check bounds, so it doesn't really matter whether you specify the first
size. For example, the compiler would interpret the declaration of re­
ceived_art as if it had been written:

ir(t (*received_arg) [6] [7] ;

Another way to pass multidimensional arrays is to explicitly pass a pointer
to the first element, and pass the dimensions of the array as additional
arguments. In our example, what gets passed is actually a pointer to a
pointer to a pointer to an into

flO
{

int ar [5] [6] [7] ;

f2(ar, 5, 6, 7);

f2(received_arg, diml, dim2, dim3)
int ***received_arg;
int diml, dim2, dim3;

}

The advantage of this approach is that you need not know ahead of time
the shape of the multidimensional array. The disadvantage is that you

www.manaraa.com

Arrays and Pointers 201

need to manually perform the indexing arithmetic to access an element.
For example, to access ar[xJlyJlz] in f2(), you would need to write:

*«int *)received_arg + x*dim3*dim2 + y*dim2 + z)

Note that we need to cast received_arg to a pointer to an int because we
are performing our own scaling. Although this method requires consider­
ably more work on the programmer's part, it gives more flexibility to /2 ()
since it can accept three-dimensional arrays of any size and shape.
Moreover, it is possible to define a macro that simplifies the indexing ex­
pression. However, we defer a discussion of complex macros to Chapter
10.

6.11.3 Multidimensional Array Example
The following function is a practical example of how multidimensional ar­
rays are used. The purpose of the function is to determine the resulting
data type of a binary expression. The function takes two arguments,
which are integers representing the data types of the operands. It returns
an integer representing the result type. You may want to review Chapter
3 if you have forgetten how C determines the data types of expressions.

#include <stdio.h>

typedef enum {SPECIAL = -2, ILLEGAL, INT, FLOAT,
DOUBLE, POINTER, LAST} TYPES;

int type_needed(typel, type2)
int typel, type2;
{

static TYPES result _type [LAST) [LAST) =
/* int float double
*/

/* int */ INT, DOUBLE, DOUBLE,
/*float */ DOUBLE, DOUBLE, DOUBLE,
/*double */ DOUBLE, DOUBLE, DOUBLE,
/*pointer*/ POINTER, ILLEGAL, ILLEGAL,

int result = result_type [typel) [type2) ;

if (result == ILLEGAL)

{
pointer

POINTER,
ILLEGAL,
ILLEGAL,
SPECIAL

} ;

printf("Illegal pointer operation.\n");
return result;

}

www.manaraa.com

202 Chapter 6

All of the work is done by the array declaration. Each data type is as­
signed an integer value with the enum declaration; then we set up a ma­
trix of return types. If type1 is an int and type2 is a float, the return type
is DOUBLE (as is the case on most pre-ANSI compilers-the result type
is float on ANSI compilers). Because of the way we have set up the two­
dimensional array, all we need to do is input the two types as subscripts
and the referenced element gives us the return type.

This function illustrates a number of important programming concepts
that are worth reviewing. First, note that we use an enum to define con­
stants for all of the return data types. This way, we can add new types
without worrying about what integer value is used to represent them. The
enum declaration ensures that each constant name will have a unique in­
teger value, and that LAST will represent the total number of types. Note
that we use LAST to specify the size of the array.

Also, we use comments and formatting techniques to make the array as
readable as possible. The computer itself doesn't care how it is format­
ted. We could write the declaration as follows, and the program would
work exactly the same, but it would be harder to understand and main­
tain.

char return_type [4] [4] { 0, 2, 2, 3, 3, I, 2, -I,
2, 2, 2, -I, 3, -1,-1,-2

} ;

Finally, we should say a word about the SPECIAL case when both oper­
ands are pointers. This expression is only legal if the pointers point to
the same type of object and if the operator is a minus sign, in which case
the result is an into To make this function perfect, therefore, we would
need to determine what type of pointers the operands are and what the
operator is.

6.12 Arrays of Pointers
In certain situations, it is useful to employ an array of pointers. Consider
the following declaration:

The variable ar _o!..,p[] is a 5-element array of pointers to characters, not
a pointer to a S-element array of characters. This is because the array
element operator [] has higher precedence than the dereferencing opera­
tor •. We discuss complex declarations such as this one in more detail in
Chapter 9.

www.manaraa.com

Arrays and Pointers 203

So far the pointers have not been assigned any values, so they point to
random addresses in memory. But you can make assignments such as:

char *ar_of-p[5];
char cO 'a';
char c1 = 'b';

ar_of-p[O] &cO;
ar_of-p[l] &c1;

These declarations and assignments cause the compiler to do two things.
First it must allocate two bytes somewhere in memory for the variables cO
and c1. Then it assigns the addresses of these variables to ar _of...p [OJ
and ar _of"'p[lJ. Figure 6-7 shows the storage relationship. The ad­
dresses in the figure are arbitrary. The only thing that is guaranteed is
that ar _of...p [OJ and ar _of...p [1] will contain the addresses of cO and c1,
and that cO and c1 will be initialized to 'a' and 'b'.

Element Address Memory Element Address Memory

,
996 lFFF .. ," .. '

ar_of_p[O] 1000 2000 CO 2000 'a'

ar_of_p[l] 1004 2001 Cl 2001 !['b'

ar_of_p[2] 1008 undefined 2002

ar_of_p[3] 100C undefined

ar_of_p[4] 1010 undefined

1014 ;:
,.,,""",

Figure 6-7. Array of Pointers.

Arrays of pointers are frequently used to access arrays of strings. The
following function, for example, takes an integer (from 1 to 12) repre­
senting a month as its input, and prints the name of the month.

www.manaraa.com

204 Chapter 6

#include <stdio.h>

void print_month(m
int m;
{

}

static char *month[13] = { "Badmonth", "January",
"February", "March", "April", "May",
"June", "July", "August", "September",
"October", "November", "December"

if (m > 12)
{

} ;

printf("Illegal month value.\n");
exit(1);

}
printf("%s\n", month[m]);

The variable month is a 13-element array of pointers to chars. Because
of the initialization, each pointer actually points to the initial element of a
string. Figure 6-8 shows how this would be stored in memory. Note that
the month names are not necessarily contiguous, as shown by the gap be­
tween "February" and "March". The characters making up each name
must be contiguous, but the names themselves can be placed anywhere
the compiler sees fit.

Note that the array contains 13, not 12, elements, and that the initial ele­
ment is initialized to "Badmonth." The reason we have this extra pointer
with a useless value is so that we don't have to subtract anything from the
subscript. We could just as easily declare a 12-element array, and then
change the print/O statement to:

printf("%s\n" ,month [m-1]);

We prefer the first version, though, because it is more straightforward. It
is a fairly common practice to discard the initial element of an array
when the subscript values start naturally at 1. The only drawback to do­
ing this is that you must allocate an extra element that is never used. But
doing arithmetic on a subscript expression also has its price. Additional
arithmetic operations usually translate into extra machine code that
makes the program run more slowly. The extra instructions also take up
more memory, so you don't even save memory by using element zero.
Like many stylistic issues, the question of whether to declare an extra un­
used element is a question of readability and efficiency. The correct an­
swer depends on the machine code produced by your compiler, the com­
puter resources at your disposal, and your own aesthetic inclinations.

www.manaraa.com

Arrays and Pointers 205

Element Address Memory Address Memory Address Memory

• 4 byte~ .1 byt~ .1 byt~

month[O[1000 2000 2000 '8' 2010 'F'

2.009
'a' 'e'

month[1) 1004
2001 2011

2002 'd' 2012 'b'

month(2) 1008 2010
2003 'm' 2013 'r'

month(3) 100C 2500 ' 2004 ' 0' 2014 'u '

.. 2800
'n' 'a'

month(4] 1020
2005 2015

2006 't ' 2016 'r'
:
3000

'h' 'y'
month[5] 1024

2007 2017

month[6] 1028 3006 2008 '\0' 2018 ' \ 0'

300A 'J' ,.,'~';"" rlf~~"'4;, ~'t,,''r. month(7] 102C
2009

2010 'a' 2500 'M'
month (8) 1030 '300F

201A 'n'
2501 'a'

month (9) 1034 4000 2018 ' u' 2502 'r '

400A ' a' 'c' month[10] 1038
201C

2503

4011

'r' 'h ' .
month[11] 103C

2010
2504

'y' '\0' 201E
2505

month(12] 1040 ·401 A 201F '\0' ".~::.~ 'tl ",,'

Figure 6-8. Storage of an Array of Pointers to Strings.

www.manaraa.com

206 Chapter 6

The print_month 0 function would be more useful if, instead of printing
the month, it returned it. The calling function could then do with it what
it wished. To write this version, we need to declare a function that re­
turns a pointer to a char. This function appears on the followin page.

#include <stdio.h>

char *month_text(m
int m;
{

static char *month[13] = { "Badmonth" , "January",
"February", "March", "April", "May",
"June", "July", "August", "September",
"October", "November", "December"

} ;
if (m > 12)

{
printf("Illegal month value.\n");
exit (1);

}
return month[m] ;

}

6.13 Pointers to Pointers
A pointer to a pointer is a construct used frequently in sophisticated pro­
grams. To declare a pointer to a pointer, precede the variable name with
two successive asterisks. For instance,

int **p;

declares p to be a pointer to a pointer to an into To dereference the
pointer and access the int, you also need to use two asterisks. For exam­
ple:

j = **p;

assigns an integer to j.

Consider the following series of declarations:

int r = 5;
int *q - &rj
int **p = &q;

These declarations result in the storage pattern shown in Figure 6-9.
Both q and r are pointers, but q contains the address of an int, whereas p
contains the address of a pointer to an into

www.manaraa.com

Arrays and Pointers 207

We can assign values to r in three ways, as shown in the following state­
ments.

r = 10;
*q = 10;
**p = 10;

Variable

r

q

P

/* Direct assignment */
/* Assignment with one indirection */
/* Assignment with two indirections */

Memory

Address Contents

4- 4 bytes ----+
/' /

99C 5 V

~
t.

1004 99C
....
j

}
,

100C 1004 /
:::'

I
Figure 6-9. A Pointer to a Pointer.

As an example of when you might use a pointer to a pointer, suppose you
want to write a spelling checker. The function takes a string as input and
compares it to an internal dictionary to see if it matches . If it does match,
a null pointer is returned; if it doesn't, a pointer to the spelling of the
closest match is returned. To make the program more useful (and illus­
trate pointers to pointers), though, let's write it so that it tests not only
English words, but French words as well.

One way to do this is to create a two-dimensional array of pointers . The
first subscript selects the English or French dictionary; the second sub­
script selects a particular word in one of the dictionaries. In addition to
accepting a string as an argument, the function takes another argument
that indicates the language of the input string. These parameters are put
in a header file that we call speU.h:

typedef enum { FRENCH, ENGLISH, LANG_NUM } LANGUAGE;
extern char *check_spell();
#define NULL (char *) 0

The function might look like the example shown on the following page .

www.manaraa.com

208 Chapter 6

#include "spell.h"
#define MAX_WORDS 50
/* Dictionary in alphabetic order

* with NULL as last entry.
*/
static char *dict[LAST_LANG] [MAX_WORDS] = {

{ "aardvark", "abacus", "abash", "abbot",
"abhor", "able", "abort", "about", NULL

} ,
{ "abeille", "absence", "absurde", "accepter",

"accident", "accord", "achat", "acheter", NULL
} };

/* Return NULL pointer if str is found in dictionary
* Otherwise, return a pointer to the closest match
*/

char *check_spell(str, language)
char *str;
LANGUAGE language;
{

}

int j, diff;

/* Iterate over the words in the dictionary */
for (j=0; dict[language] [j] != NULL; ++j)

{
diff = strcmp (str, dict [language] [j]);

/* Keep going if str is greater than dict entry */
if (diff > 0)

}

continue;
if (diff == 0)

return NULL; /* Match! */

/* No match, return closest spelling */
return dict[language] [j];

/* Return last word if str comes after last
* dictionary entry
*/

return dict[language] [j-l];

To save space and energy, we entered only the first few words of the dic­
tionary. Normally, the dictionary would be stored in a file so you would
not need to enter the words in an initialization. The function strcmp (),
which is part of the C library, compares two strings and returns zero if

www.manaraa.com

Arrays and Pointers 209

they are equal and the difference between the first two differing chars if
they are not equal. If stremp () returns zero, the input string must be
equal to one of the strings in the dictionary, so we return NULL. If the
input string doesn't match any of the strings in the dictionary, we assume
that it is misspelled and return a pointer to the closest spelling.

Note that we need to include a null pointer as the last element in the in­
itialization list. This is because the for loop iterates based on the value of
diet [language] [j], which is a pointer to a string of chars. So long as
diet [language] [j] is a valid pointer, the loop will continue to iterate.
When diet [language] [j] is a null pointer (i.e., all words in the array are
exhausted), the loop will terminate. Without a null pointer to terminate
the loop, j would be incremented beyond the reserved storage for the ar­
ray, causing unpredictable behavior.

By using the language selector (language), we cut our work in half since
we need to check the words in only one of the dimensions. We can
make the function even more efficient by introducing a pointer to a
pointer. One of the areas of inefficiency in the current version is the ele­
ment reference diet [language] [jJ . In order to evaluate this expression,
the compiler has to do a fair amount of arithmetic, determining the offset
values and scaling them to the proper size. By eliminating one or both of
the subscript operators, we can make the function more efficient.

www.manaraa.com

210 Chapter 6

#include "spell.h"
#define MAX_WORDS 50
/* Dictionary in alphabetic order

* with NULL as last entry.
*/
static char *dict[LAST_LANG] [MAX_WORDS] = {

{ "aardvark", "abacus", "abash", "abbot",
"abhor", "able", "abort", "about", NULL

} ,
{ "abeille", "absence", "absurde" , "accepter",

"accident", "accord", "achat" , "acheter" , NULL
} };

/* Return NULL pointer if str is found in dictionary
* Otherwise, return a pointer to the closest match.
* This time use pointers instead of array references
*/

char *check_spell(str, language)
char *str;
LANGUAGE language;
{

int diff;
char **z;

/* Iterate over dictionary entries */
for (z = dict[language]; *z; z++)

}

{
diff • strcmp(str, *z)

/* Keep going if str is greater than dict entry */
if (diff > 0)

}

continue;
if (diff == 0)

return NULL; /* Match! */

/* No match, return closest spelling */
return *z;

/* Return last word if str comes after last
* dictionary entry
*/

return z[-l];

www.manaraa.com

Arrays and Pointers 211

The variable z is declared to be a pointer to a pointer to a char. It is
used to hold the addresses of the elements of dict [language]. Recall that
dict[] is an array of arrays, so z points to an element of one of two arrays,
either dict[ENGLISH] or dict[FRENCH]. The for statement then incre­
ments z directly instead of using a subscript. If the function does not find
a match, it returns *z, where z is the pointer to the current dictionary en­
try. This is the same algorithm as the first version, all we have done is to
take the array address expression, &dict [language] [jJ, and put it in z.

This second version of check_speliO may seem like a lot of trouble to go
through just to eliminate some subscripts, and in a sense it is. But it illus­
trates one C's strengths: there is almost always something you can do to
make a program more efficient. This type of improvement-removing
subscripts so the compiler can avoid excessive pointer arithmetic-is
called strength reduction.

www.manaraa.com

212 Chapter 6

Exercises
1. Modify the avg_temp() function so that it prints the average tem­

perature for each month. Use an array to store the number of
days in each month.

2. Write a function that initializes encoder[] with random values.
Use the rand() and srandO functions described in Chapter 12,
and make sure that all the elements have a unique value from 0
through 127.

3. Given the following declarations and assignments, what do these
expressions evaluate to:

static int ar[]={10, 15, 4, 25, 3, -4};
int *p;
p = &ar[2];

a) * (p+1)
b) p[-l]
c) (ar-p)
d) ar[*p++]
e) * (ar+ar[2])

4. What's wrong with the following code:

int j, ar[5] = {1, 2, 3, 4, 5 };
for (j=l; i < 5; ++j)

printf ("%d\n", ar [j]);

5. Modify the bubble sort program so that instead of actually rear­
ranging the elements of an array, it stores the correct order in
another array called ord []. For example, if an original 5-ele­
ment sequence is

13 25 11 2 14

then the values of ord[] after sorting should be:

ord [0] 2
ord [1] 4
ord [2] 1

ord [3] °
ord [4] 3

www.manaraa.com

Arrays and Pointers 213

6. Write a function called merge_arraysO that takes two sorted ar­
rays and merges them into one sorted array. The function
header should be:

void merge_arraY5()
double *a, *b, *c;

where a and b are pointers to the two sorted arrays, and c is a
pointer to the resulting merged array.

7. Modify merge_arraysO so that it eliminates duplicate entries.

8. Write a function called strcat 0 that appends one string to an­
other. The function should accept two arguments that are point­
ers to str 1 and str2, and return a pointer to the first character in
str 1. Make sure to overwrite the null character in str 1.

9. Rewrite the strlenO function using pointers and increment opera­
tors to make it as efficient as possible.

10. Revise pat_match 0 so that it is not case sensitive.

11. Are the declarations

char 5[10];

and

char *5;

the same? If not, show how they are different by writing a pro­
gram where they cannot be interchanged.

12. The names of many high-tech companies all sound similar.
They start with roots such as "Com," "Data," "Inter," and end
with suffixes such as "graph," "dex," and "mation." Come up
with some more beginnings and endings, and write a program us­
ing rand 0 that randomly puts the two together to form company
names.

13. Modify the program in Section 6.10.4 so that it does not fail if
the input string is more than MAX_CHAR characters.

14. Modify the result_type 0 function so that it works correctly for
the SPECIAL case. (Hint: you will need to add an additional ar­
gument to the function.)

15. Write a function that sorts an array of character strings into al­
phabeticalorder. Note that this is really a two-dimensional array
of chars.

www.manaraa.com

214 Chapter 6

16. Given the following declarations, what do these expressions
evaluate to?

static int a[2] [3] = { { -3, 14, 5 },
{ 1, -10, 8 }

} ;
static int *b[] {a[O] , a[l] };
int *p = b[l] ;

a) *b[l]
b) * (++p)
c) *(*(a+1)+1)
d) *(--p-2)

17. Which of the following expressions are equivalent to a [j][k]?

a) * (a [j] + k)
b) .. (a [j+k])
c) (* (a+j))[k]
d) (* (a+k))[j]
e) *«*(a+j) + k)
f) * * (a+j) + k
g) * (&a [0][0] + j + k)

www.manaraa.com

Chapter 7

Storage Classes

Memory: what wonders it performs in preserving
and storing up things gone by, or rather, things
that are! - Plutarch, Morals: On the Cessation of
Oracles

Most large programs are written by teams of programmers. After design­
ing the general outline of the program together, each programmer goes
off and writes an isolated piece of the program. When everyone is fin­
ished, all the pieces are linked together to form the complete program.
For this process to work, there must be a mechanism to ensure that vari­
ables declared by one programmer don't conflict with unrelated variables
of the same name declared by another programmer. On the other hand,
there is usually some data that needs to be shared between different
source files, so there must also be a mechanism that ensures that some
variables declared in different files do refer to the same memory locations
and that the computer interprets those locations in a consistent fashion.
In C, you define whether a variable is to be shared, and which portions of
code can share it, by designating its scope.

II Scope" is the technical term that denotes the region of the C source text
in which a name's declaration is active.

Another property of variables is duration, which describes the lifetime of
a variable's memory storage. Variables with fixed duration are guaran­
teed to retain their value even after their scope is exited. There is no
such guarantee for variables with automatic duration.

www.manaraa.com

216 Chapter 7

Collectively, the scope and duration of a variable is called its storage
class. This chapter describes storage classes in detail.

Consider the following program segment:

void func()
{

int j;
static int ar[]={1,2,3,4};

}

There are two variables, j and ar. Both have block scope because they
are declared within a block. They can be referenced, or "seen", only by
statements within the block. Variables with block scope are often called
local variables.

Variable j has automatic duration (the default for variables with block
scope), whereas ar has fixed duration because it is declared with the
static keyword. This means that j has memory allocated to it automati­
cally and may have a new address each time the block is entered. ar, on
the other hand, has memory allocated for it just once, and keeps its origi­
nal address for the duration of the program.

The next section describes fixed and automatic variables in more detail.
We use the term "fixed" as opposed to the more common term "static"
so as not to confuse the concept with the keyword. The static keyword
does give a variable static duration but it also has scoping implications not
usually associated with static variables.

7.1 Fixed vs. Automatic Duration
As the names imply, a fixed variable is one that is stationary, whereas an
automatic variable is one whose memory storage is automatically allo­
cated during program execution. This means that a fixed variable has
memory allocated for it at program start-up time, and the variable is as­
sociated with a single memory location until the end of the program. An
automatic variable has memory allocated for it whenever its scope is en­
tered. The automatic variable refers to that memory address only as long
as code within the scope is being executed. Once the scope of the auto­
matic variable is exited, the compiler is free to assign that memory loca­
tion to the next automatic variable it sees. If the scope is re-entered, a
new address is allocated for the variable. There is no way to ensure that
an automatic variable will retain its value from one scope entry to an­
other.

www.manaraa.com

Storage Classes 217

Local variables (those whose scope is limited to a block) are automatic by
default, but you can make them fixed by using the keyword static in the
declaration. The auto keyword explicitly makes a variable automatic,
but it is rarely used since it is redundant.

7.1.1 Initialization of Variables
The difference between fixed and automatic variables is especially impor­
tant for initialized variables. Fixed variables are initialized only once
whereas automatic variables are initialized each time their block is re­
entered. Consider the following program:

void increment()
{

}

int j=l;
static int k=l;

j++;
k++;
printf("j: %d\tk: %d\n", j, k);

mainO
{

}

increment();
increment();
increment();

The incrementO function increments two variables, j and k, both initial­
ized to 1. j has automatic duration by default, while k has fixed duration
because of the static keyword. The result of running the program is:

j: 2 k: 2
j: 2 k: 3
j: 2 k: 4

When incrementO is called the second time, memory for j is reallocated
and j is reinitialized to 1. k, on the other hand, has still maintained its
memory address and is not reinitialized, so its value of 2 from the first
function call is still present. No matter how many times we call incre­
mentO, the value ofj will always be 2, while k will increase by 1 with each
invocation.

www.manaraa.com

218 Chapter 7

We can summarize this observation with the following rule: an automatic
variable, when declared with an initializer, is re-initialized every time its
block is re-entered; a fixed variable is initialized only once at program
startup-time.

Another important difference between automatic and fixed variables is
that automatic variables are not initialized by default whereas fixed vari­
ables get a default initial value of zero. If we rewrite the previous pro­
gram without initializing the variables, we get:

void increment 0
{

int j;
static int k;

j++;
k++;
printf("j: %d\tk: %d\n", j, k);

}

mainO
{

}

increment();
increment();
increment();

Executing the program on our machine results in:

j: 3604481
j: 3604481
j: 3604481

k: 1
k: 2
k: 3

The values of j are random because the variable is never initialized. With
each invocation of incrementO, j receives a new memory allocation and
acquires whatever "garbage" value happens to be at the new location.
Because most compilers use a stack-frame implementation, the garbage
values may, in this simple example, be the same each time. The C lan­
guage, however, does not guarantee this. If you use a more complicated
calling sequence, the results will be different. A helpful compiler will is­
sue a warning if you attempt to use an uninitialized automatic variable be­
fore you have made an assignment to it.

Another difference between initializing variables with fixed and automatic
duration is the kinds of expressions that may be used as an initializer.
For scalar variables with automatic duration, the initializer may be any
expression, so long as all of the variables in the expression have been pre­
viously declared. For example, all of the following declarations are legal.

www.manaraa.com

Storage Classes

{
int j 0, k = 1;
int m j + k;
float x = 3.141 * 2.3;

219

The next series of declarations is illegal because j and k appear in an ex­
pression before they are declared:

{
/* The following assignment is illegal because j

* and k have not yet been declared.
*/

int m j + k;

/* j and k are declared now, but it' s too late.
*/

int j = 0, k = 1;

The rules for initializing variables with fixed duration are stricter. The in­
itialization must be a constant expression, which means that it may not
contain variable names. For example:

int j
int k

10 * 4; /* OK */
j ; / * NOT OK * /

7.1.2 Using Variables with Fixed Duration
A common use of fixed variables is to keep track of how many times a
function is invoked and to change the function's execution at regular in­
tervals. As an example, suppose you have a program that formats an in­
put text file and writes the formatted output to another file. One of the
functions in the program is print_header(), called at the beginning of
each new page. However, you want it to write a different header depend­
ing on whether the page is even-numbered or odd-numbered. The fol­
lowing version shows a possible solution that makes use of a fixed vari­
able.

www.manaraa.com

220 Chapter 7

#define ODD a
#define EVEN 1

print_header (chap_title
char *chap_title;
{

}

static char page_type ODD;

if (page_type == ODD)
{

}

printf("\t\t\t\t%s\n\n", chap_title);
page_type = EVEN;

else
{

}

printf ("%s\n\n", chap_title);
page_type = ODD;

The variable page _type acts as a toggle switch, alternating between ODD
and EVEN. When the page number is odd, the function prints the string
pointed to by chap_title on the right side of the page; when the page is
even, the chap _title string appears on the left side. Note that the pro­
gram depends on page _type having fixed duration. If page _type had
automatic duration, it would get re-initialized to zero with each invoca­
tion, and the function would always print odd-numbered headers.

7.2 Scope
As stated earlier, the scope of a variable determines the region over
which you can access the variable by name. There are four types of
scope: program, file, function, and block.

• Program scope signifies that the variable is active among different
source files that make up the entire executable program. Vari­
ables with program scope are often referred to as global vari­
ables.

• File scope signifies that the variable is active from its declaration
point to the end of the source file.

• Function scope signifies that the name is active from the begin­
ning to the end of the function.

• Block scope signifies that the variable is active from its declara­
tion point to the end of the block in which it is declared. A
block is any series of statements enclosed in braces. This in­
cludes compound statements as well as function bodies.

www.manaraa.com

Storage Classes 221

In general, the scope of a variable is determined by the location of its
declaration. Variables declared within a block have block scope; vari­
ables declared outside of a block have file scope if the static keyword is­
present, or program scope if static is not present; only goto labels have
function scope.

The four scopes are arranged hierarchically as shown in Figure 7-1. A
variable with program scope is also active within all files, functions, and
blocks that make up the program. Likewise, a variable with file scope is
also active within all functions and blocks in the file, but is not active in
other parts of the program. At the bottom of the hierarchy is block
scope, the most limiting case.

Program Scope

Function Scope

Figure 7-1. Hierarchy of Active Regions (Scopes).

The program fragment below shows variables with all four types of scope:

int i; /* Program scope */
static int j; /* File scope */

func(k /* Program scope */
int k; /* Block scope */
{

int m; /* Block scope */

start: /* Function scope */

Note that function parameters have block scope. They are treated as if
they are the first declarations in the top-level block (see Box 7-1).

www.manaraa.com

222 Chapter 7

The C language allows you to give two variables the same name, provided
they have different scopes. For example, the two functions below both
use a variable called j, but because they are declared in different blocks,
they do not conflict.

funcl()
{

int j;

}

func2 ()
{

int j;

}

It is also possible for variables with the same name to have different
scopes that overlap. In this event, the variable with the smaller scope
temporarily "hides" the other variable. For instance:

int j=lO;
main()

/* Program scope */

{
int j; /* Block scope -- hides global j */
for (j=O; j < 5; ++j)

printf("j: %d", j);
}

There are two j's, one with program scope and the other with block
scope. Although they have the same name, they are distinct variables.
The j with block scope temporarily hides the other j, so the result of run­
ning the program is:

j: 0
j: 1
j: 2
j: 3
j: 4

The j with program scope retains its value of 10.

www.manaraa.com

Storage Classes 223

7.2.1 Block Scope
A variable with block scope cannot be accessed outside of its block. This
limitation is really an advantage since it protects the variable from inad­
vertent side effects. By limiting the region over which variables can be
seen, you reduce the complexity of a program, making it more readable
and maintainable. Block scoping allows you to write sections of code
without worrying about whether your variable names conflict with names
used in other parts of the program. Also, readers of your program know
that the variable's use is limited to a small region.

It is also possible to declare a variable within a nested block. This tempo­
rarily hides any variables of the same name declared in outer blocks.
This feature can be useful when you want to add some debugging code
into a function. By creating a new block and declaring variables within it,
you eliminate the possibility of naming conflicts. In addition, if you de­
lete the debugging code at a later date, you need not look at the top of
the function to find variable declarations that also need to be deleted.

In the following example, we add some debugging code that prints the
values of the first ten elements of an array.

foo ()
{

int ar[20];
int j;

/* Begin debug code */
{

/* This j does not conflict
int j;
for (j=O; j <= 10; ++j)

printf("%d\t" , ar[j]) ;

}
/* End debug code */

}

with other j's.*/

Although variable hiding is useful in situations such as these, it can also
lead to errors that are difficult to detect. Consequently, you should use
the name-hiding feature judiciously.

www.manaraa.com

224 Chapter 7

7.2.2 Function Scope
The only names that have function scope are goto labels. Labels are ac­
tive from the beginning to the end of a function. This means that labels
must be unique within a function. Different functions, however, may use
the same label names without creating conflicts.

Box 7-1: ANSI Note - Scope of Function
Arguments

According to the ANSI Standard. the scope of function arguments
is the same as the scope of variables declared at the top level. This
makes it illegal to hide a function argument by declaring a top­
level block scope argument with the same name. For instance:

func(a
int a;
{

int a; /* This is illegal */

In older compilers. this syntax may be legal. but we can think. of
no reason for using it. In fact, it can be a troublesome bug. Many
compilers issue a warning when they encounter thi,s syntax.

7.2.3 File and Program Scope
Giving a variable file scope makes the variable active throughout the rest
of the file. So if a file contains more than one function, all of the func­
tions following the declaration are able to use the variable. To give a
variable file scope, declare it outside of a function with the static key­
word.

Variables with program scope, called global variables, are visible to rou­
tines in other files as well as their own file. To create a global variable,
declare it outside of a function without the static keyword. In the follow­
ing program segment, j has program scope and k has file scope. Both
variables can be accessed by routines in the same file, but only j can be
accessed by routines in other files.

int j;
static int k;

main ()
{

www.manaraa.com

Storage Classes 225

Variables with file scope are particularly useful when you have a number
of functions that operate on a shared data structure, but you don't want
to make the data available to other functions. A file that contains this
group of functions is often called a module. The linked-list functions in
Chapter 8 illustrate a good use of a variable with file scope.

Box 7-2: Bug Alert - The Dual Meanings of static
One of the most confusing aspects about storage-class declarations
in C is that the static keyword seems to have two effects depending
on where it appears. In a declaration within a block, static gives a
variable fixed duration instead of automatic duration. Outside of a
function, on the other hand, static has nothing to do with dura­
tion. Rather, it controls the scope of a variable, giving it file scope
instead of program scope.

One way of reconciling these dual meanings is to think of static as
signifying both file scoping and fixed duration. Within a block, the
stricter block scoping rules override static's file scoping, so fixed
duration is the only manifest result. Outside of a function, dura­
tion is already fixed, so file scoping is the only manifest result.

7.3 Global Variables
In general, you should try to avoid global variables as much as possible.
They make a program hard to maintain because they increase a pro­
gram's complexity. If you are attempting to understand someone else's
code, the static keyword signifying file scope is a boon since it ensures
that you need only look in the current source file to see all interactions of
the variable. If the static keyword is absent, you must assume the worst
and look at every source file that is part of the program to see if the vari­
able is used. This can be a frustrating and needless exercise.

Global variables also create the potential for conflicts between modules.
Two programmers working on separate parts of a large a project may
choose the same name for different global variables. The problem won't
s.urface until the entire program is linked together, at which time it may
be difficult to fix .

When you need to share data among different routines, it is usually better
to pass the data directly, or pass pointers to a shared memory area. The
one· advantage of global variables is that they produce faster code. In
most cases, however, the increase in execution speed comes at the ex­
pense of a significant decrease in maintainability. Such trade-offs of exe­
cution speed for maintainability should be made only at the end of a pro­
ject when it is clear that performance is a problem.

www.manaraa.com

226 Chapter 7

Because global names must be recognized not only by the compiler, but
also by the linker or binder, their naming rules are a little different. The
ANSI Standard guarantees only that the first six characters of a global
name will be recognized. Also, a compiler may suspend the case-sensi­
tivity rule for global names. This is an unfortunate restriction, but it is
necessary to support older systems. Note, however, that even though the
compiler may recognize only the first six characters, you are not re­
strained from adding additional characters to make the name more
meaningful. Just make sure that the first six characters are unique.

7.3.1 Definitions and Allusions
Up to now, we have assumed that every declaration of a variable causes
the compiler to allocate memory for the variable. However, memory al­
location is produced by only one type of declaration, called a definition.
Global variables permit a second type of declaration, which we call an al­
lusion. An allusion looks just like a definition, but instead of allocating
memory for a variable, it informs the compiler that a variable of the
specified type exists but is defined elsewhere. In fact, we have already
used allusions in some of our examples to declare functions defined else­
where. For example:

main()
{

-extern int f(); /* Allusion to f() */
extern float g(); /* Allusion to g() */

Global variables follow the same rules as functions. Whenever you want
to use global variables defined in another file, you need to declare them
with allusions. For example, the following program contains allusions to j
and array_of J [] .

void func()
{

extern int j;
extern float array_of_f[];

/* An allusion */
/* An allusion */

The extern keyword tells the compiler that the variables are defined else­
where. The purpose of the allusion is to enable the compiler to perform
type checking. For any global variable, there may be any number of allu­
sions but only one definition among the source files making up the pro­
gram.

www.manaraa.com

Storage Classes 227

The rules for creating definitions and allusions are one of the least-stan­
dardized features of the C language because they involve not just the C
compiler, but the linker and loader as well. This section describes the
ANSI rules. Box 7-3 describes two other common strategies.

To define a global variable according to the ANSI Standard, you need to
make a declaration with an initializer outside of a function. The pres­
ence or absence of the extern keyword has no effect. For instance, the
following code defines two global variables, one local variable, and al­
ludes to one global variable:

int j=O;
extern float x
func ()

/* Global Definition */
1.0; /* Global Def~nition */

{
int k = 0;
extern int j;

/* Local Definition */
/* Allusion to global variable */

If you omit an initializer, the compiler produces either an allusion (if ex­
tern is specified) or a tentative definition (if extern is not present). A
tentative definition is a declaration that can become either a definition or
an allusion depending on what the remainder of the source file contains.
If no real definition for the variable occurs (Le., one with an initializer)
in the remainder of the source file, the tentative definition becomes a
real definition, initialized to zero. Otherwise, if there is a real definition
in the source file, the tentative definition becomes an allusion. In the fol­
lowing example, j is a tentative definition that becomes a real definition,
and k is a tentative definition that becomes an allusion.

int j;
int k;

fO
{

}

int j

/* Tentative Definition */
/* Tentative Definition */

1; /* Real definition of j makes the
* tentative definition an allusion.

*
* There is no real definition of k,
* so the tentative definition becomes
* a real definition.
*/

www.manaraa.com

228 Chapter 7

Typically, you put all allusions in a header file which can be included in
other source files. This ensures that all source files use consistent allu­
sions. Any change to a declaration in a header file is automatically
propagated to all source files that include that header file.

Box 7-3: Non-ANSI Strategies for Declaring Global
Variables

K&R Strategy

This strategy, sometimes called the "omitted-extern strategy," is
the simplest. Regardless of scope, if a declaration contains the ex­
tern keyword, it is an allusion and not a definition. A global defi­
nition is produced by declaring a variable outside of a block, with­
out the extern keyword. For instance. the following segment con­
tains one definition (j) and two allusions (k and m).

int j;
extern int k;
fune ()
{

extern int m;

The presence or absence of an initializer does not affect whether
the declaration i a definition or an allusion. but some compilers
will not allow you to include an initializer with an allusion. Those
that allow an initializer igp.ore it. Global variables defined without
an initializer are automatically initialized to zero.

UNIX Strategy

This technique, adopted by the C compiler for U IX, uses the
presence or absence of an initializer to determine whether a decla­
ration is a definition or an allusion. For declaration occurring
outside of a block. there are three possibilities:

1. If extern is present, the declaration is an allusion. It is ille­
gal to include both extern and an initializer.

2. If extern is not present, and the declaration includes an in­
itializer. the declaration is a definition.

(continues)

www.manaraa.com

Storage Classes 229

Box 7-3 (continued):

3. If extern is not present, and the variable is not initialized, a
"common" definition (as in FORTRAN) is emitted. If, in
the entire set of source files, there is one definition and one.
or more common definitions of a variable, the common
definitions become allusions. If there are no real defini­
tions, and only common definitions, the linker itself pro­
vides a definition for the variable and resolves the common
definitions as if they were allusions.

The UNIX method is similar to the ANSI method. The essential
difference is that the ANSI method decides whether to make a
tentative definition a real definition' or an allusion based on
whether any definitions exist in the current source file. The UNIX
method delays this decision until link time so that it can see if the
variable is defined in other modules.

A Portable Strategy

If you want your programs to run on a wide range of computers,
you should use the following method which is compatible with the
ANSI Standard, the K&R standard, and UNIX compilers.

- To define a global variable, omit the exter~ keyword, and
include an initializer.

- To allude to a global variable, include extern but omit an
initializer.

For instance, to define j in header file foo.h, and reference it in
file prog.c, you would write:

File foo.h:

File prog.c:

int j .. O;

extern int j;
foo ()
{

www.manaraa.com

230 Chapter 7

7.4 The register Specifier
The register keyword enables you to help the compiler by giving it sug­
gestions about which variables should be kept in registers. To understand
the purpose of register variables, it is necessary to understand how regis­
ters work in computers.

Every computer has a limited number of registers, which are storage areas
within the CPU. Each register is capable of holding a unit of data (typi­
cally two or four bytes) and arithmetic calculations are processed using
these registers. For example, on a hypothetical machine, the simple
statement,

j .. k+m;

might cause the compiler to load 2 registers, call them rO and rl, with the
values stored in k and m. The computer then adds the two registers, and
writes the result to the memory location occupied by j.

Operations involving registers are generally faster than memory opera­
tions. If you could store every variable in its own register, your program
would run somewhat faster. Unfortunately, computers usually have far
fewer registers than there are variables. As a result, the compiler must
try to figure out the optimal strategy for assigning values to registers so as
to minimize memory accesses. This is one of the most difficult jobs com­
pilers perform, and it is often what separates a good compiler from a bad
one.

The register keyword is designed to help the compiler decide which vari­
ables to store in registers. However, it is only a hint, not a directive-the
compiler is free to ignore it. The degree of support for register varies
widely from one compiler to another. Some compilers store all variables
defined as register in a register until all of the cqmputer's registers are
filled. Other compilers ignore register altogether. Still others contain
some type of intelligence that tries to determine whether it really is best to
store a register variable in a register. All of these variations are within
the ANSI Standard.

Since a variable declared with register might never be assigned a memory
address, it is illegal to take the address of a register variable (registers are
not addressable). This is true regardless of whether the variable is actu­
ally assigned to a register. You should get a compile error if you ever try
to take the address of a variable declared with register.

A typical case where you might use register is when you use a counter in
a loop. In fact, we can rewrite our strlen() example from Chapter 6 to
make use of the register feature.

www.manaraa.com

Storage Classes 231

int strlen(p
register char *p;
{

}

register int len 0;

while (*p++)
len++;

return len;

Note that this does not guarantee that p or len will be kept in registers
throughout the duration of the function's execution, but it makes it more
likely. In theory, there is no limit to the number of variables that you
can declare with register. In practice, however, compilers only recog­
nize the first n register declarations. After that. they interpret a register
declaration as a regular auto declaration. You should read the documen­
tation for your particular compiler to find out how you can best utilize the
register keyword.

Box 7-4: ANSI Feature - The canst Storage-Class
Modifier

The const keyword, borrowed from the C++ language developed
by Bjarne Stroustrup, specifies that the variable may not be modi­
fied in any way following its initialization. For instance, after de­
claring str [J,

const char str[lO] = "Constant";

you cannot change any of the values in the array str [J. The state­
ment,

str[O] >= 'a';

would be illegal and should be reponed as an error by the compil­
er. The rule, however, does not necessarily apply to non-const
pointers that point to const objects. If you make the additional
declaration,

ch,ar *p = &str [5] ;

then the statement,

*1' .. 'm';

mayor may not be legal, depending on the compiler. Ideally, this
should be illegal, but in many cases it is impossible for the compiler
to diagnose this error.

(continues)

www.manaraa.com

232 Chapter 7

Box 7-4 (continued):

You can use const in place of a #define directive. For instance:

canst long double pi a 3.1415926535897932385;

One unusual aspect concerning the const keyword is that it may
appear between the pointer symbol (-) and the variable name, as
in:

int -const const-ptr;

This means that the pointer constJtr is a constant - it must point
to the same object as long as it exists. Contrast this to the similar­
looking declaration,

int const *ptr_to_const

which says that the object which ptr _to_const points to cannot
change. ptr _to_const itself can be assigned a different address, al­
though it must be an address of an object declared with const.
That is, ptr _to_const can only point to objects of type const into

The main purpose of const is to ensure that read-only data is not
modified. This is particularly useful when passing pointer argu­
ments to functions. By declaring the argument with const, you can
ensure that the called function will not change the object pointed
at by the pointer. In the following example, the declaration of q as
a pointer to a const object guarantees that the strcpy() function
will not change the object that q points to.

char *strcpy(p, q)
char *p;
const char *q;

}

The const feature is also useful to some computer manufacturers
in determining which pans of data can be "burned" into ROMs
(Read-Only Memory). ROMs are essential for systems that do not
have some other storage medium, such as disk storage, available.
In addition, ROMs are considerably less expensive than read-and­
write memory boards.

www.manaraa.com

Storage Classes

Box 7-5: ANSI Feature - The volatile Storage­
Class Modifier

233

The volatile keyword. which is not supported by older compilers.
informs the compiler that the variable can be modified in ways un­
known to the C compiler. This usually applies to variables that are
mapped to a particular memory address (i.e .• device registers). In
these cases, it is crucial that an expression or a series of statements
be executed exactly as they are written rather than being reordered
for optimization purposes. For instance. suppose KEYBOARD in
the following function is a device register that accepts characters
from the keyboard.

void get_two_kbd_chars()
{

}

extern char KEYBOARD;
char cO, c1;

cO KEYBOARD;
c1 KEYBOARD ;

The purpose of the function is to read a character from the key­
board and store it in cO, then read the next character and store it
in c1. However. the C compiler. unaware that th~ value of KEY­
BOARD can be changed outside of the block, is likely to store the
value of KEYBOARD in a register and then assign that register to
cO and c1. In other words, it will compile the program as if it had
been written:

void get_two_kbd_chars()
{

}

extern char KEYBOARD;
char cO, c1
register char temp;

temp = KEYBOARD;
cO = temp;
c1 .. temp;

Obviously. this is not what was intended since the same character
will be assigned to both cO and c1. To ensure that KEYBOARD is
read twice, you must declare it as volatile:

extern volatile char KEYBOARD;

(continues)

www.manaraa.com

234 Chapter 7

Box 7-5 (continued):

Another situation where normal opnm,ll.ation techniques can
change the meaning of a program is in loop-invariant expressions.
For instance, using KEYBOARD again, suppose we have the func­
tion:

void read_ten_chars()
{

}

extern char KEYBOARD;
int x;
char c;

for (x- O; x < 10; x++)
{

}

c - KEYBOARD;
copy (c) ;

The purpose of the function is to read 10 successive characters
from the keyboard and pass each to a function called copy(). To
the compiler, however, it looks like an inefficient program because
c will be assigned the same value 10 times. To optimize the pro­
gram, the compiler may translate it as if it had been written like
this:

{

}

extern char KEYBOARD;
int x;
char c;

c - KEYBOARD; /* The invariant expression is
removed from the loop. */

for (x-O; x < 10; x++)
copy (c);

As a result, the same character is sent to copy() each time. Once
again, declaring KEYBOARD with volatile ensures that the expres­
sion is not extracted from the loop.

The volatile modifier is often used in a cast expression. The fol­
lowing statement assigns the contents of hexadecimal address 20 to
the variable c. The volatile keyword in the cast ensures that the
assignment will not be optimized in any way.

c - (*(volatile char *) Ox20);

www.manaraa.com

Storage Classes 235

7.5 Summary of Storage Classes
So far we have described the semantics of storage classes-how they af­
fect variables. But we have glossed over some of the details about syn­
tax-how storage classes are specified. In this section, we summarize the
ANSI rules for the syntax and semantics of the storage-class keywords.

There are four storage-class specifiers (auto, static, extern, and regis­
ter), and two storage-class modifiers (const and volatile). Any of the
storage class keywords may appear before or after the type name in a
declaration, but by convention they come before the type name. The se­
mantics of each keyword depends to some extent on the location of the
declaration. Omitting a storage class specifier also has a meaning, as de­
scribed below. Table 7-1 summarizes the scope and duration semantics
of each storage class specifier.

auto

static

extern

register

The auto keyword, which makes a variable auto­
matic, is only legal for variables with block
scope. Since this is the default anyway, auto is
somewhat superfluous and is rarely used.

The static keyword may be applied to declara­
tions both within and outside of a function (ex­
cept for function arguments), but the meaning
differs in the two cases. In declarations within a
function, static causes the variable to have fixed
duration instead of the default automatic dura­
tion. For variables declared outside of a func­
tion, the static keyword gives the variable file
scope instead of program scope.

The extern specifier may be used for declara­
tions both within and outside of a function (ex­
cept for function arguments). For variables de­
clared within a function, it signifies a global allu­
sion. For declarations outside of a function, ex­
tern denotes a global definition. In this case,
the meaning is the same whether you specify ex­
tern or not.

The register keyword may be used only for vari­
ables declared within a function. It makes the
variable automatic, but also passes a hint to the
compiler to store the variable in a register when­
ever possible. You should use the register key­
word for automatic variables that are accessed
frequently. Compilers support this feature at

www.manaraa.com

236

omitted

const

volatile

~
Declared

Storage
Class
Specifier

auto or
register

static

extern

No storage
class specifier
present

Chapter 7

various levels. Some don't support it at all, while
others support as many as 20 concurrent register
assignments.

For variables with block scope, omitting a stor­
age class specifier is the same as specifying auto.
For variables declared outside of a function,
omitting the storage class specifier is the same as
specifying extern. It causes the compiler to pro­
duce a global definition.

The const specifier guarantees that you cannot
change the value of the variable.

Declaring a variable with the volatile specifier
causes the compiler to turn off certain optimiza­
tions. This is especially useful for device regis­
ters and other data segments that can change
without the compiler's knowledge.

Outside of Within a Function
a Function Function Arguments

scope: block scope: blook
NOT ALLOWED

duration: automatlo duration: automatio

soope: file soope: blook
NOT ALLOWED

duratidn: fixed duration: fixed

soope: program soope: blook

duration: fixed duration: fixed NOT ALLOWED

soope: program soope: blook soope: blook

duration: fixed duration: dynamio duration: automatio

Table 7-1. Semantics of Storage Class Specifiers.

The syntax for storage class keywords is rather loose, allowing some dec­
larations that have little or no meaning. For example, it is legal to de­
clare a variable with both register and volatile, although it is unclear
how a compiler would interpret it. The only real syntactic restriction is
that a declaration may include at most one storage-class specifier. But

www.manaraa.com

Storage Classes 237

either or both modifiers may be used. The following, for example, is per­
fectly legal and even has a reasonable meaning:

{
extern canst volatile char real time_clock;

It is an allusion to a variable of type char that is both const and volatile.

7.6 Dynamic Memory Allocation
Fixed variables provide a means for reserving memory for the duration of
a program, while automatic variables cause the system to allocate memory
when each block is entered. Both of these approaches assume that you
know how much memory you need ahead of time when you write the
source code. Frequently, however, the amount of memory required by a
program hinges on the input. For example, consider the bubble_sortO
function in the previous chapter. Suppose you want to write another
function that reads a list of numbers entered from the keyboard, and
then calls bubblejortO to put them in order. To make the function as
useful as possible, it should work no matter how many numbers you en­
ter. But if the amount of input varies from one execution to another,
how large an array should you declare to store the input?

There are two solutions to this problem. The simplest is to pick a maxi­
mum value and declare an array of that size. For instance, if you decide
to set a limit of 100 input values, you would declare a 100-element array,
as shown in the example on the following page.

www.manaraa.com

238 Chapter 7

#include <stdio.h>
#define MAX_ARRAY 100

mainO
{

extern void bubble_sort();
int list [MAX_ARRAY] , j, sort_num;

printf("How many values are you going to enter? ");
scanf ("%d ", &sort _ num);
if (sort_num > MAX_ARRAY)
{

}

printf("Too many values -- %d is the maximum\n",
MAX_ARRAY) ;

sort_num = MAX_ARRAY;

for (j=O; j < sort_num; j++)
scanf("%d", &list[j]);

bubble_sort (list, sort num);
exit (0);

}

There are two basic problems with this solution. First, you need to set an
arbitrary maximum. This isn't good because there may be a future time
when you want to exceed this limit. The second, related problem is that
the higher the maximum, the more memory is wasted. If you declare an
array with 100 4-byte ints, but only use ten of them, you are wasting 360
(90*4) bytes. 360 wasted bytes isn't too bad, but suppose you set the
maximum at 1000. Then the number of wasted bytes would be 3,960, or
almost 4K. On a small computer, this is a significant amount of memory.

The other solution takes advantage of runtime library functions that en­
able you to allocate memory on the fly. There are four dynamic memory
allocation functions:

mallocO

callocO

reallocO

free 0

Allocates a specified number of bytes in mem­
ory. Returns a pointer to the beginning of the al­
located block.

Similar to malloc 0, but initializes the allocated
bytes to zero. This function also allows you to
allocate memory for more than one object at a
time.

Changes the size of a previously allocated block.

Frees up memory that was previously allocated
with malloc 0, calloc 0, or realloc O.

www.manaraa.com

Storage Classes 239

Each of these functions is described in detail in Appendix A. The follow­
ing function shows how you might use malloeO to get space for data to
sort.

#include <stdio.h>

main()
{

}

extern void bubble_sort();
int *list, sort_num, j;

printf(nHow many numbers are you going to enter?");
scanf (n%d n , &sort_num);
list = (int *) malloc(sort_num * sizeof(int));
for(j=O; j < sort_num; j++)

scanf (n%d n , list + j);
bubble_sort (list, sort_num);
exit(0);

The argument to malloe() is the size in bytes of the block of memory to
be allocated-in this case, the number of elements times the size of each
element. malloe() returns a pointer to the beginning of the allocated
block. We cast the result to a pointer to an int because on most older
compilers malloe() returns a pointer to a char (see Box 7-6). Using eaZ­
Zoe (), the storage allocation statement would be:

list = (int *) calloc(sort_num, sizeof(int));

The ealloe() function takes two arguments: the first is the number of ob­
jects to reserve memory for, and the second is the size of each object.

Note that the functions using malloe() and ealloe() depend on the fact
that all the elements are stored contiguously. If they weren't, the expres­
sion list + j would not necessarily retrieve the next value. The only rea­
son they are stored together is because they are allocated in a single
block. If you were to allocate each element individually, the operating
system would be free to spread the elements around. For instance, the
statements

pl (int *) malloc(sizeof(int));
p2 (int *) malloc(sizeof(int));
p3 (int *) malloc(sizeof(int));

allocates memory for three ints, but there is no guarantee about the rela­
tive locations of the three objects. pi might point to address 10,000,
while p2 points to address 5,000. Therefore, you cannot allocate mem­
ory for each individual element and expect them to be contiguous. You
must know ahead of time the total size of the block that is required.

www.manaraa.com

240 Chapter 7

There is a technique to get around this limitation called a linked list. We
describe linked lists in the next chapter.

Box 7-6: ANSI Feature - Generic Pointers
The memory allocation functions are implemented differently in
the ANSI Standard than in the K&R standard and most previous
versions of C. Prior to the ANSI standard, the memory allocation
functions would return a pointer to a char that designated the be­
ginning of the allocated region. It was the programmer's responsi­
bility to cast .the returned pointer to a pointer of the correct type.
The ANSI version makes use of the void data type by returning a
pointer to a void. The void pointer is a generic pointer that is
automatically cast to the correct type when it is assigned a pointer
value. The following example shows how the new version of mal­
loc () differs from the old version.

Old Call to mallocO

int num, *pt;

pt (int *) malloc(sizeof(num));

ANSI Call to mallocO
#include <stdlib.h>

int num, *pt;

pt malloc(sizeof(num));

You do not need to cast the function result in the ANSI version.
The cast, though redundant in the ANSI version, is not illegal, so
old code will still work with the new memory-management func­
tions. You must, however, include the header file stdlib.h because
it contains function prototypes (described in Chapter 10). Be­
cause the new syntax, without the cast, will not work on older com­
pilers, we use the old version in our examples .

www.manaraa.com

Storage Classes 241

Exercises
1. For all of the following declarations, state which ones are defini­

tions and which ones are allusions:

int j;
float x = 1. 0;
extern char *p
static int a;

"string";

char *fl(argl, arg2
register int argl;
double arg2;
{

}

extern float x;
extern char *p2;
static long int big_int;
register long rl;
unsigned ul;

int j = 0;

2. Write declarations for the following. Include braces to make it
clear whether the declaration appears inside or outside of a
block.

a) An automatic local into
b) A fixed local float.
c)
d)
e)
f)
g)
h)
i)

A global pointer to a char, initialized with a null pointer.
An int with file scope.
A register int argument.
A constant double.
A constant pointer to a double.
A pointer to a constant char.
A volatile into

www.manaraa.com

242 Chapter 7

3. What are the initialized values of the variables in the following
program? Also identify all of the following declarations as defini­
tions, tentative definitions, or allusions.

static int s = 2;
int x = 3;
extern int xl;

main()
{

}

static float j = x + 5;
float jl = x + xl;
static float x2;
float x3;
register int s2;

extern int x4 = 3

4. Write a function that prints out n asterisks. where n represents
the number of times it has been called. If it is called four times,
for instance, the output will be:

*
**

www.manaraa.com

Chapter 8

Structures and Unions

Art and science cannot exist but in minutely
organized particulars. - William Blake, To the
E:uhlik

Arrays are good for dealing with groups of identically typed variables, but
they are unsatisfactory for managing groups of differently typed data. To
service groups of mixed data, you need to use an aggregate type called a
structure. (Other languages, such as Pascal, call this data type a record.)
Another aggregate type, called a union (similar to a variant record in Pas­
cal), enables you to interpret the same memory locations in different
ways.

8.1 Structures
We are all familiar with the ubiquitous forms that ask for our name, date
of birth, and social security number. The purpose of this information is
usually obscure, but we can assume that, like most other information, it
eventually finds its way into a computer memory bank. Years later, it
comes back to haunt us when we fail to pay a parking ticket or when we
apply for a loan. It is reasonable to ask how this not-so-innocuous infor­
mation is stored in the computer.

www.manaraa.com

244 Chapter 8

The first piece of information (your name) is clearly a character array.
The second and third pieces of information can be treated as either char­
acter arrays or integers, or even as arrays of integers. For this discussion,
we treat the date as three integers, one each for day, month, and year.
We treat the social security number as an ll-element character array
(ten characters for digits, and one for the terminating null character).
You cannot put all of the information in a single array because arrays
contain only one type of data. You can, however, store this information
in separate variables. For instance, y.ou might write:

char name [19] , ssnum[ll];
short day, month, year;

You could then enter data with the following assignments:

strcpy(name, "John Doe");
strcpy (ssnum, "0132222456");
day == 26;
month = 11;
year = 1957;

Storing the data in this fashion gets the information into the computer,
but creates a strange organization. The information about one person is
scattered about memory instead of being grouped together. The arrange­
ment becomes even worse if you adjust the data structure to accommo­
date information about more than one person. In this case, you would
need to make each piece of information an array. To store data about
1000 people, you would write:

char name [1000] [19], ssnum[1000] [11];
short month [1000] , day [1000] , year [1000] ;

A more natural organization would be to create a single variable that con­
tains all three pieces of data. C enables you to do this with a data type
called a structure. A structure is like an array except that each element
can have a different data type. Moreover, the elements in a structure,
called fields or members, have names instead of subscript values. We
like to think of structures as arrays with personality. To declare a struc­
ture to hold one's vital statistics, you would write:

struct vitalstat
{

}

char vs_name[19] , vs_ssnum[11];
short vs_month, vs_day, vs-year;

struct vitalstat vs;

www.manaraa.com

Structures and Unions 245

There are two declarations: the first declares a structure template called
vitalstat; the second declares an actual variable called vs with the
vitalstat form. It is a good idea to include a unique prefix for each mem­
ber name so that the members are not confused with members of other
structures that may have similar names. The storage for vs on our ma­
chine is shown in Figure 8-1. Note that the fields are stored consecu­
tively in the order they are declared. Contiguity, however, is not re­
quired. As we describe later in this chapter, it is possible for structures to
contain gaps between members.

1000

1004

1008

101C

1020

1024

1028

102C

1030

Figure 8-1. Memory Storage for the vs Structure.

The name vitalstat is called a tag name. It represents a new, user-de­
fined data type, but no storage is allocated for it. You can use the tag
name over and over again within a program to create additional variables
with the same fields. For instance, you could write:

struct vitalstat vsa[lOOO] , *pvs;

The variable vsa[j is an array with 1000 members; each member is itself
a structure containing the fields, vs_name[j, vs_ssnum[j, vs_day,

www.manaraa.com

246 Chapter 8

vs_month, and vS"year. The variable pvs is a pointer to a structure with
these fields. You could make the assignment:

pvs = &vsa[lO] ;

which makes pvs point to element 10 of the array.

The syntax of a structure declaration can be fairly complex. The form of
declaration we have used-declaring a tag name and then using the tag
name to declare actual variables-is one of the most common. It is also
possible to declare a structure without using a tag name, as in:

struct
{

char vs_name[19] , vs_ssnum[ll];
short vs_month, vs_day, vs_year;

} vs;

This is useful if you want to declare a single structure type to be used in
one place only. You can also declare a tag name and variables together:

struct vitalstat
{

char vs_name[19] , vs_ssnum[ll];
short vs_month, vs_day, vs_year;

} vs, *pvs, vsa[lO];

A final method, which is the one we use most often, is to define a
typedef name. For instance:

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
short vs_month, vs_day, vs_year;

} VITALSTAT;

In this case, the type VITALSTA T represents the entire structure de clara -
tion, including the struct keyword. Note that we use all capital letters for
the typedef name to keep it distinct from regular variable names and tag
names. To declare a variable with this structure, you would write:

VITALSTAT vS;

A tag name or typedef enables you to define the data structure just once
even though you may use it over and over again. Typically, structure defi­
nitions are placed in a header file where they can be accessed by multiple
source files.

www.manaraa.com

Structures and Unions 247

8.1.1 Initializing Structures
You can initialize a structure in the same manner as you initialize arrays.
Follow the structure variable name with an equal sign, followed by a list
of initializers enclosed in braces. Each initializer should agree in type
with the corresponding field in the structure. For instance:

VI TAL STAT vs = { "George Smith", "002340671",
3 , 5, 1946,

} ;

The ANSI Standard allows you to initialize both automatic and fixed
structures, but the K&R standard and most older C compilers allow you
to initialize only fixed structures. Also, you may not include an initializer
in a declaration that contains only a tag name or is a typedef since these
types of declarations create templates but do not allocate storage. The
following, for instance, is invalid:

typedef struct
{

int a;
float b;

} s = { 1, 1.0 }; /* Initializer is not allowed
* in a typedef
*/

8.1.2 Referencing Structure Members
Having declared a structure, you need a way to access the fields. There
are two methods, depending on whether you have the structure itself or a
pointer to the structure. Each method uses a special operator. If you
have the structure itself, you can enter the structure name and field name
separated by the dot (.) operator. For instance, to assign the date,
March 15, 1987 to vs, you would write:

vs.vs_month = 3;
vs.vs_day = 15;
vs.vs_year = 1987;

The referenced field expression is just like any other variable, so you can
use vs.vs_month anywhere you would normally use a short variable. The
following statement, for instance, is perfectly legal:

if (vs.vs_month > 12 I I vs.vs_day > 31)
printf("Illegal Date.\n");

www.manaraa.com

248 Chapter 8

The other way to reference a structure member is indirectly through a
pointer to the structure. Declaring pointers to structures is the same as
declaring pointers to other kinds of objects:

VI TAL STAT *pvs; /* Declare a pointer to a
structure of type VI TAL STAT */

To reference a member through a pointer, use the right-arrow operator
(-», which is formed by entering a dash followed by a right angle
bracket. For example:

if (pvs->vs_month > 12 I I pvs->vs_day > 31)
printf("Illegal Date.\n");

The right-arrow operator is actually a shorthand for dereferencing the
pointer and using the dot operator. That is,

pvs->vs_day

is the same as:

8.1.3 Arrays of Structures
Since a structure is a data object, it is possible to create arrays of struc­
tures. An array of structures is declared by preceding the array name
with the structure typedef name:

VI TAL STAT vsa[lO];

The following function counts the number of people in a particular age
group. We assume that the array of structures has already been filled
with data and a pointer to the beginning of this array is passed as an argu­
ment. The second argument is the number of elements in the array. We
also assume that the include file called v_stat. h contains the declaration
of VITALSTAT.

www.manaraa.com

Structures and Unions 249

#include "v_stat.h" /* contains declaration of
* VITALSTAT typedef name.
*/

int agecount(vsa, size, low_age, high_age,
current_year)

VI TAL STAT vsa[];
int size, low_age, high_age, current_year;
{

}

int i, age, count = 0;

for (i = 0; i < size; ++i)
{

}

age = current_year - vsa[i] .vs_year;
if (age >= low_age && age <= high_age)

count++;

return count;

As we noted in Chapter 6, indexing into an array is not as efficient as us­
ing a pointer to an array since indexing involves an additional multiplica­
tion. The computer must mUltiply the index by the size of the array ele­
ment and add the resulting offset to the base of the array. You can avoid
some of this arithmetic by assigning a pointer to the base of the array.
Then you need only increment the pointer for each iteration. This is an
optimization called strength reduction, which is performed automatically
by some compilers.

Rewriting agecountO using pointers and the -> operator, we get the func­
tion shown on the following page.

www.manaraa.com

250 Chapter 8

#include "v_stat.h" /* Contains declaration
* of VI TAL STAT typedef name.
*/

int agecount(vsa, size, low_age, high_age,
current_year)

VI TAL STAT vsa[];
int size, low_age, high_age, current_year;
{

}

int i, age, count = 0;

for (i = 0; i < size; ++vsa, ++i)
{

}

age = current_year - vsa->vs_year;
if (age >= low_age && age <= high_age)

count++;

return count;

The only difference between this version and the earlier version is that we
increment vsa directly instead of incrementing an index variable. The
declaration of vsa remains the same due to C's array-passing conven­
tions. Recall from Chapter 6 that C converts an argument declared as an
array into a pointer to the array type. In both versions, therefore, vsa is a
pointer to a VITALSTAT structure. You could also declare it as:

VITALSTAT *vsa;

Note that pointer scaling enables us to use the increment operator to
move the pointer down the array. In this case, vsa points to a 36-byte
structure, so it is incremented 36 bytes on each iteration.

One stylistic problem with the pointer version of age count () is that it
changes the value of the formal parameter vsa. This is perfectly legal,
but it is a dangerous practice in general because it makes the function less
maintainable. The problem is that you or another programmer may ex­
pand the function later on and use vsa again, expecting it to still point to
the beginning of the array. But instead, it will point to the last element of
the array.

Maintaining a program is easier if you can assume that formal parameters
maintain their initial value throughout the function. In this particular
case, assigning to formal parameters isn't too big a problem because the
function is small and relatively simple. For larger, more complex func­
tions, however, you should avoid assigning into formal parameters. The
simplest solution is to create temporary variables initialized with the

www.manaraa.com

Structures and Unions 251

values of the formal parameters, as shown in the following version of
agecountO:

#include "v_stat.h" /* Contains declaration
* of VITALSTAT typedef name.
*/

int agecount(vsa, size, low_age, high_age,
current_year)

VI TAL STAT vsa[] ;
int size, low_age, high_age, current_year;
{

}

int age, count 0;
VI TAL STAT *p = vsa, *p_last &vsa[size];

for (
{

age = current_year - p->vs_year;

}

if (age >= low_age && age <= high_age)
count++;

return count;

8.1.4 Nested Structures
When one of the fields of a structure is itself a structure, it is called a
nested structure. Nested structures are common in C programming be­
cause they enable you to create data hierarchies. For instance, we can
rewrite the VITALSTAT structure as:

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
struct
{

short vs_day;
short vs_month;
short vs_year;

} vs_birth_date;
} VITALSTAT;

We replace the three fields representing the date of birth with a structure
containing these fields. The storage allocation is the same, but instead of
accessing the year as,

www.manaraa.com

252 Chapter 8

we access it as:

vs.vs_birth_date.vs_year

The second reference is more readable since vs_birth_date. vS"year is
more meaningful than vs "year.

Another way to declare nested structures is with typedefs. We can re­
write the previous declaration as:

typedef struct
{

char day;
char month;
short year;

} DATE;

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
DATE vs_birth_date;

} VITALSTAT;

VITALSTAT vsa[1000] ;

Note that we also changed day and month to be chars because all possi­
ble values for these members can be represented in eight bits. Having
defined a new structure type called DATE, we can put it in a header file
(date.h) and use this structure template in other ways. For this reason,
we did not include the vs_ prefix in the field names. For instance, in an­
other program we might write:

#include "date.h"

typedef struct
{

DATE d;
char event [20] ;

} CALENDAR;

CALENDAR holiday = {
{ 12, 25, 1986 },
{ "Christmas" }

} ;

Note that when you initialize a nested structure, you should enclose it in
braces, just as you would if you were initializing a multidimensional array.
Theoretically, there is no limit to the number of levels you may nest

www.manaraa.com

Structures and Unions 253

structures. Eventually, though, the field references· become rather hard
to read since they contain all of the intermediary structures.

Box 8-1: ANSI Feature - struct and union Name
Spaces

The ANSI Standard requires C compilers to create a separate
naming space within each structure and union. so that two or
more structures or unions can have components with the same
name. For example:

struct 51 {
int a,b;

} ;

struct 52 {
float a.b;

} ;

This feature is an extension to the K&R standard, so it may not
be available on older compilers. Moreover, for stylistic reasons,
you should avoid giving different variables the same name unless
there is a very good reason for doing so.

• Tag names, member names, and variable names are all distinct,
so a tag. a member. and a variable may have the same name
without a conflict arising. The following. for example. is legal:

struct x { int x;} x;

Again. you should be careful not to abuse this capability.

8.1.5 Self-Referencing Structures
A structure or union may not contain instances of itself, but it may con­
tain pointers to instances of itself. For example:

struct s {
int a , b;
float c;
struct s *pointer_to_s;
} ;

/* This is legal.*/

As this example illustrates, you are permitted to declare pointers to struc­
tures that have not yet been declared. This feature enables you to create
self-referential structures, and also to create mutually referential struc­
tures and unions, as shown in the following example .

www.manaraa.com

254

struct sl {
int a;
struct s2 *b;
} ;

struct s2 {
int a;
struct sl *b;
} ;

Chapter 8

Each structure contains an integer as the first component and a pointer to
the other structure as the second component. The compiler allows you to
declare a pointer to struct s2 before s2 is ever declared. This situation,
known as forward referencing, is one of the few instances in the C lan­
guage where you may use an identifier before it has been declared.

Note that forward references are not permitted within typedefs. The fol­
lowing produces a syntax error:

typedef struct
{ int a;

FOO *p; /* Produces an error because FOO has not
* been declared yet.
*/

} FOO;

8.1.6 Alignment of Structure Members

Some computers require that any data object larger than a char must be
assigned an address that is a multiple of a power of two. For instance,
the Motorola 68000 CPU requires that all objects larger than a char be
stored at even addresses. Normally, these align!llent restrictions are in­
visible to the programmer. However, they can create holes, or gaps, in
structures. Consider how a compiler would allocate memory for the fol­
lowing structure:

struct ALIGN_EXAMP
{

char meml;
short mem2;
char mem3;

} sl;

If the computer has no alignment restrictions, s1 would be stored as
shown in Figure 8-2.

www.manaraa.com

Structures and Unions 255

1000 meml mem3

1004

Figure 8-2. Allocation Without Alignment Restrictions.

If the computer requires objects larger than a char to be stored at even
addresses, sl would be stored as shown in Figure 8-3. This storage ar­
rangement results in a 1-byte hole between meml and mem2 and follow­
ing mem3. The trailing gap is necessary so that in an array of
ALIGN_EXAMP structures, each element would begin at an even ad­
dress.

1000 meml

1004 mem3

Figure 8-3. Allocation with Alignment Restrictions.

Note that you can avoid these holes by rearranging the member declara­
tions:

struct ALIGN EXAMP
{

char mem1, mem3;
short mem2;

} sl;

Because structures can be allocated differently on different machines,
you should be careful about accessing them in a portable manner. One
way to avoid portability problems is to make sure that all members are
naturally aligned. Natural alignment means that an object's address is
evenly divisible by its size. For example, all two-byte objects would have
an even address and all 4-byte objects would have addresses divisible by
four. Natural alignment is the strictest alignment requirement that any
computer imposes, so if all members of a strucutre are naturally aligned,
the strucutre will be portable from one computer to another. You can
control the alignment of members by using bit fields, as described in the

www.manaraa.com

256 Chapter 8

next section. You can also promote portability by accessing members by
their names rather than through unions or offsets from pointers.

8.1.7 Bit Fields
The smallest data type that C supports is char, which is usually 8 bits
long. But in structures, it is possible to declare a smaller object called a
bit field. Bit fields behave like other integer variables, except that you
cannot take the address of a bit field and you cannot declare an array of
bit fields.

The syntax for declaring a bit field is shown in Figure 8-4.

~I base I--~-------------r----~ type

bit field
name

bit length

Figure 8-4. Syntax of Bit Field Declarations.

The base type may be int, unsigned int, or signed into If the bit field is
declared as int, the implementation is free to decide whether it is an un­
signed int or a signed int. For portable code, use the signed or un­
signed qualifier. (Many compilers allow you to use enums, chars, and
shorts as the base type.)

Bit fields may be named or unnamed. Unnamed fields cannot be ac­
cessed and are used only as padding. As a special case, an unnamed bit
field with a width of zero causes the next structure member to be aligned
on the next int boundary.

The bit length is an integer constant expression that may not exceed the
length of an into On machines where ints are 16 bits long, for example,
the following is illegal:

int too_long: 17;

The compiler allocates at least a char's worth of memory, and possibly
more. The precise number of bits allocated is implementation depend­
ent, but the compiler must allocate at least as many bits as are specified
by the bit field length, and the length must be an even multiple of chars.
Consecutive bit fields are packed into the allocated space until there is no
room left. Assuming your compiler allocates 16-bits for a bit field, the
following declarations would cause a, b. and c to be packed into a single
16-bit object (see Figure 8-5).

www.manaraa.com

Structures and Unions

struct
{

int a 3;
int b 7;
int c 2' ,

} s;

Address 0 1 2 3 4 5 6 7 8 9

1000

1002

8 b

12 13 14 15

Figure 8-5. Storage of Three Consecutive Bit Fields .

257

However, each implementation is free to arrange the bit fields within the
object in either increasing or decreasing order, so a compiler might ar­
range the bit fields as shown in Figure 8-6 .

Address

1000

1002

13 14 15

8

Figure 8-6. Alternative Storage of Three Consecutive Bit Fields.

Also, if a bit field would straddle an int boundary, a new memory area
may be allocated, depending on your compiler. For instance, the decla-
ration,

struct
{

int a 10;
int b 10;

} s;

might cause a new 16-bit area of memory to be allocated for b, as shown
in Figure 8-7. As a result, 32 bits would be allocated, even though only
20 are used. If you are using bit fields to save storage space, you should
try to arrange the fields to avoid gaps .

www.manaraa.com

258 Chapter 8

Address 0 123 4 5 6 7 8 9 10 11 12 13 14 15

1000

I
a

I
gap

I 1002 b gap

Figure 8-7. Storage of Two Consecutive Bit Fields.

As the preceding discussion indicates, the implementation of bit fields
varies somewhat from one compiler to another. Consequently, you
should use bit fields with care-they are inherently non-portable. There
are two situations where the use of bit fields are valid: 1) when efficient
use of memory or data storage is a serious concern; and 2) when you
need to map a structure to a predetermined organization. The second
situation occurs when somebody else has defined a structure that contains
objects smaller than chars and you need to manipulate this
externally-created structure.

As an example of using bit fields to save space, consider our DATE struc­
ture. Since a day value cannot exceed 31 and a month value cannot ex­
ceed 12, we can rewrite the DATE structure using bit fields as:

struct DATE
{

unsigned int day 5;
month: 4;
year: 11;

} ;

Only 20 bits are needed for the three fields . Due to the bit field alloca­
tion rules, however, some compilers would allocate 24 bits while others
would allocate 32 bits. Figures 8-8 and 8-9 show two possible allocation
schemes for an array of DATE structures. Figure 8-8 assumes that the
compiler packs bit fields to the nearest char and allows bit fields to span
int boundaries. Note that each array element must begin at a char
boundary. Figure 8-9 assumes that ints are 16 bits, and that the com­
piler does not allow bit fields to span int boundaries.

www.manaraa.com

Structures and Unions 259

Address 0 15 31

1000 day m

1004 onth year day month ye

1008 ar

Figure 8-8. Storage of the DATE Structure with Bit Fields. This
figure assumes that the compiler packs bit fields to the
nearest char and allows fiedls to span int boundaries.

Address 0 5
;;---;;-----r-:-,.

1000 day month year

1004 day month year

1008 day month year

Figure 8-9. Alternative Storage of the DATE Structure with Bit Fields.
This figure assumes that the compiler packs bit fields to
the nearest short and does not allow fields to span int
boundaries.

8.1.8 Passing Structures as Function Arguments
There are two ways to pass structures as arguments: pass the structure it­
self (called pass by value) or pass a pointer to the structure (called pass
by reference). The two methods are shown in the following example.

www.manaraa.com

260 Chapter 8

VITALSTAT vs;

func(vs); /* Pass by value -- Passes an entire
* copy of the structure.
*/

func(&vs); /* Pass by reference -- Passes the
* address of a structure.
*/

Passing the address of a structure is usually faster because only a single
pointer is copied to the argument area. Passing by value. on the other
hand. requires that the entire structure be copied. There are only two
circumstances when you should pass a structure by value:

• The structure is very small (Le .• approximately the same size as a
pointer).

• You want to guarantee that the called function does not change
the structure being passed. (When an argument is passed by
value. the compiler generates a copy of the argument for the
called function. The called function can only change the value
of the copy. not the value of the argument on the calling side.
This is described in greater detail in Chapter 9.)

In all other instances. you should pass structures by reference. (Note:
passing structures by value. though supported in almost all C compilers. is
not part of the original K&R standard. It is required by the ANSI Stan­
dard.)

Depending on which method you choose. you need to declare the argu­
ment on the receiving side as either a structure or a pointer to a structure:

or

func(vs)
VITALSTAT vs;

func(pvs
VITALSTAT *pvs;

/* Pass by value -- the argument is a
* structure.
*/

/* Pass by reference -- the argument
* is a pointer to a structure.
*/

Note that the argument-passing method you choose determines which
operator you should use in the function body-the dot operator if a struc­
ture is passed by value. and the right-arrow operator if the structure is
passed by reference.

www.manaraa.com

Structures and Unions

Box 8-2: Bug Alert - Passing Structures vs.
Passing Arrays

Passing structures is not the same as passing arrays. This incon­
sistency in the C language can cause confusion.

To pass an array in C, you simply specify the array name without
a subscript. The compiler interprets the name as a pointer to the
initial element of the array so it really passes the array by refer­
ence. There is no way to pass an array by value (except to em­
bed it in a structure and pass the structure by value).

With structures, however, the structure name is interpreted as the
entire structure, not as a pointer to the beginning of the struc­
ture. If you use the same syntax that you use with arrays, there­
fore, you will get different semantics. For example:

int ar[lOO];
struct tag st;

func(ar);

func(st);

/. Passes a pointer to the first
element of are] ./

/. Passes an entire structure ./

The inconsistency follows through to the receiving side. For ex­
ample, the following two array versions are the same:

func(ar)
int ar[];

func(ar)
int ·ar;

/. ar is converted to a pointer
to an int ./

/* ar is a pointer to an int */

But the following two structure versions are very different:

func(st)
struct tag st; /* st is an entire structure */

func(st)
struct tag *st; /* st is a pointer to

a struct */

261

www.manaraa.com

262 Chapter 8

8.1.9 Returning Structures
Just as it is possible to pass a structure or a pointer to a structure, it is also
possible to return a structure or a pointer to a structure. (Returning a
structure is not supported in the original K&R standard, but is a common
extension supported by most C compilers.) The declaration of the func­
tion's return type must agree with the actual returned value. For exam­
ple:

struct tag f()
{

struct tag st;

return st;
}

/* Define a function that returns */
/* a struct */

/* Return an entire struct */

struct tag *fl() /* Define a function that returns */
/* a pointer to a struct */

{
static struct tag pst;

return &pst; /* Return the address of a struct */
}

As with passing structures, you generally want to return pointers to struc­
tures because it is more efficient. Note, however, that if you return a
pointer to a structure, the structure must have fixed duration. Otherwise,
it will cease to be valid once the function returns.

One situation where returning structures is particularly useful is when you
want to return more than one value. The return statement can only send
back one expression to the calling routine, but if that expression is a
structure or a pointer to a structure, you can indirectly return any number
of values. The following function, for instance, returns the sine, cosine,
and tangent of its argument. The functions sinO, cosO and tan() are
part of the runtime library. Each accepts an argument measured in radi­
ans and returns the corresponding trigonometric value. If the argument
is too large, however, the results will not be meaningful.

www.manaraa.com

Structures and Unions

#include <stdio.h>
#include <math.h> /* include file for trig */

/* functions */

263

#define too_large 100 /* Differs from one machine */
/* to another. */

typedef struct
{

double sine, cosine, tangent;
} TRIG;

TRIG *get_trigvals(radian_val
double radian_val;
{

static TRIG result;

/* If radian_val is too large, the sine, cosine and
* tangent values will be meaningless.
*/
if (radian_val > TOO_LARGE)
{

printf("Input value too large -- cannot return \
meaningful results\n");

}

}

return NULL; /* return null pointer -- defined in
* stdio.h.
*/

result.sine = sin(radian val);
result.cosine = cos(radian_val);
result.tangent = tan(radian_val);
return &result;

8.1.10 Assigning Structures
Although it is not supported in the orginial K&R standard, most compilers
(and the ANSI Standard) allow you to assign a structure to a structure
variable, provided they share the same structure type. The code extract
on the following page shows some examples of structure assignments.

www.manaraa.com

264

5truct {

51
52
p5
52

int a;
float b;

} 51, 52, 5f(), *P5;

52;
5f () ;
&51;
*P5;

Chapter 8

This feature may not be available on older compilers. To assign struc­
tures using older versions of C, you need to use the memcpy () runtime li­
brary function. See Appendix A for more information about this func­
tion.

8.2 Linked Lists
In our examples up to now, we have used an array of structures to handle
groups of data. This is a valid approach when you know beforehand ex­
actly how many structures you are manipulating. When the number is
unknown, however, arrays can be extremely costly since they force you
to allocate enough memory for the worst-case situation. This memory is
reserved and unavailable for other uses even if you use only a fraction of
the array elements. Moreover, if you need to access more memory than
you initially allocated, your program will fail.

The obvious solution is to be able to allocate memory for new structures
as needed. C allows you to do this through the runtime library routines
malloc () and calloc (), described in Chapter 7. But successive calls to
these routines will not guarantee that the structures will be placed con­
tiguously in memory. What is needed, therefore, is a technique for con­
necting all the structures together.

The most common way to do this is through a construct called a linked
list. A linked list is a chain of structures that are linked one to another,
like sausages. In the simplest linked-list scheme, each structure contains
an extra member which is a pointer to the next structure in the list.

www.manaraa.com

Structures and Unions 265

Revising our earlier vitalstat example to make a linked list, you would
write:

typedef struct vitalstat
{

char vs_name[19]. vs_ssnum[ll];
unsigned int vs_day: 5,

vs_month : 5,
vs_year : 11;

struct vitalstat *vs_next;
} VITALSTAT;

Pictorially, a linked list looks like Figure 8-10. This is a singly linked list
because it only goes in one direction. There are also doubly linked lists,
in which each structure contains two pointers, one to the next element
and one to the previous element. The following discussion and examples,
however, are confined to singly linked lists.

Figure 8-10. A Singly Linked List.

In a typical linked-list application, you need to perform the following op­
erations:

• Create a list element

• Add elements to the end of a list

• Insert elements in the middle of a list

• Remove an element from a list

• Find a particular element in a list

Each of these tasks (except the last one) can be written as a self­
contained and generalized function that will work no matter how the
structures are configured.

www.manaraa.com

266 Chapter 8

8.2.1 Creating a Linked-List Element

To create a linked-list element, all you need to do is allocate memory for
the structure and return a pointer to this memory area.

#include "v_stat.h"

ELEMENT *create_list_element()
{

}

ELEMENT *pj

p = (ELEMENT *) malloc(sizeof(ELEMENT));
if (p === NULL)
{

}

printf("create_list_element: malloc failed.\n");
exit(1);

p->next
return p;

NULL;

To make the function as general as possible, we use the name ELE­
MENT, which gives no clue about the actual type of data being manipu­
lated. For this function to work for the vitalstat structure, we would
need to include the following typedefs in v_stat.h.

#define NULL (void *) 0

typedef struct vitalstat
{

char vs_name[19] , ssnum[ll];
unsigned int vs_day: 5,

vs_month : 5,
vs_year : 11;

struct vitalstat *next;
} VITALSTATj

typedef struct vitalstat ELEMENT;

ELEMENT becomes synonymous with struct vitalstat. Note in the decla­
ration of create_listO that it returns a value of type ELEMENT *. Note
also that you must use a tag name rather than a typedef to declare the
pointer next. This self-referencing is legal if you identify the structure by
its tag name, but not if you identify it hy a typedef name. This is because
the typedef name is not defined until the end of the declaration.

www.manaraa.com

Structures and Unions 267

8.2.2 Adding Elements

The create_list_element() function allocates memory, but it doesn't link
the element to the list. For this, we need an additional function, which
we call add_element():

#include "v_stat.h"

static ELEMENT *head

void add_element(e)
ELEMENT *e;
{

ELEMENT *p;

/* If the first element (the head) has not been
* created, create it now.
*/
if (head
{

}

head = e;
return;

NULL)

/* Otherwise, find the last element in the list */
for (p = head; p->next != NULL; P = p->next);

/* null statement */

p->next = e;
}

This function has a number of interesting aspects worth noting. The vari­
able head serves as a pointer to the beginning of the linked list. It is de­
clared with file scope so that it will be available to a number of functions.
However, all functions that use head must exist in the same source file.

The purpose of the for loop is to find the last element of the list. It goes
through each element testing to see whether p.next is NULL or not. If
not, p.next must point to another element. When p.next does equal
NULL, we have found the end of the list and we end the for loop. The
assignment,

p->next = e;

appends a new structure to the end of the list. The argument, e, is a
pointer to a structure that has been allocated by the calling function.

www.manaraa.com

268 Chapter 8

To create a linked list containing ten vitalstat structures, you could write:

#include "v_stat.h"
static ELEMENT *head;

main()
{

for (j=O; j < 10; ++j)
add_element(create_list_element());

}

8.2.3 Inserting an Element
To insert an element in a linked list, you must specify where you want the
new element inserted. The following function accepts two pointer argu­
ments, p and q, and inserts the structure pointed to by p just after the
structure pointed to by q. (See Figure 8-11.)

/* Insert p after q */
#include "v_stat.h"

void insert_after(p, q)
ELEMENT *p, *q;
{
/* Perform sanity check on arguments.

}

* If P and q are the same or NULL, or if p already
* follows q, report.
*/
if (p == NULL I I q

q->next == p)
{

NULL II p q II

printf("insert_after: Bad arguments\n");
return;

}

p->next
q->next

q->next;
p;

www.manaraa.com

Structures and Unions 269

q

BEFORE: ,--I _--,-1--,-1
g->next

q->next->next

p = rl 1·1
=1 =~-=-I--,~

AFTER:

Figure 8-11. Linked-List Insertion.

8.2.4 Deleting an Element
Deleting an element in a singly linked list is a little trickier since you need
to find the element before the one you are deleting so that you can bond
the list back together after removing one of the links. You also need to
use the free 0 function, described in Chapter 7, to free up the memory
used by the deleted element. Figure 8-12 illustrates the operation of the
delete_elementO function.

p goner p->next->next

BEFORE: 1 1 -I ~I 1 ei--+t_1 ~I 1 -I
p p->next

AFTER: 1 1 -I

Figure 8-12. Linked-List Deletion.

www.manaraa.com

270

'include "v_stat.h"

static ELEMENT *head;

void delete_element(goner
ELEMENT *goner;
{

ELEMENT *p;

if (goner == head)
head goner->next;

else

Chapter 8

{ /* Find element preceding the one to be
* deleted
*/

for (p = head; (p != NULL) && (p->next != goner);
p = p->next)

/* null statement */
if (p == NULL)
{

printf("delete_element: can't find element in\
list. \n");

return;
}
p->next = p->next->next;

}
free(goner);

}

The right-arrow operator binds from left to right. so the expression

p->next->next

is evaluated as if it had been written:

(p->next)->next

8.2.5 Finding an Element
There is no easy way to create a general-purpose find 0 function because
you usually search for an element based on one of its data fields. which
depends onethe structure being used. To write a general-purpose findO
function. you need to use pointers to functions. which are described in
the next chapter.

The following function. based on the vitalstat structure. searches for an
element whose vs_name field matches the argument.

www.manaraa.com

Structures and Unions

#include "v_stat.h"

static ELEMENT *head;

ELEMENT *find(name)
char *name;
{

}

for (p = head; p != NULL; P = p->next)
if (strcmp(p- >vs_name, name) == 0)

return p;
return NULL;

8.3 Unions

271

Unions are similar to structures except that the members are overlaid one
on top of another, so members share the same memory. For example,
the following declaration results in the storage shown in Figure 8-13.

typedef union
{

struct
{

char c1 , c2;
} s;
long j;
float x;

} U' ,

U example;

Figure 8-13. Example of Union Memory Storage.

www.manaraa.com

272 Chapter 8

The compiler always allocates enough memory to hold the largest mem­
ber and all members begin at the same address. The data stored in a un­
ion depends on which union member you use. For example, the assign­
ments,

example.s.cl 'a';
example.s.c2 'b';

would result in the storage shown in Figure 8-14.

1000 1001 1002

'8' 'b'

1003

Figure 8-14. Storage in example Union After Assignment.

But if you make the assignment,

example. j = 5;

it would overwrite the two characters, using all four bytes to store the in­
teger value 5.

Unions obey the same syntactic rules as structures. You can access ele­
ments with either the dot operator or the right-arrow operator; you can
declare bit fields, and you can use tag names.

There are two basic applications for unions:

• Interpreting the same memory in different ways.

• Creating flexible structures (called variant records in Pascal) that
can hold different types of data.

8.3.1 Interpreting Data Differently

As an example of interpreting data differently, consider the common
communications problem where data comes over the line byte by byte.
Unions provide a way of grouping bytes together so that they can be re­
constructed into their original form. For instance, suppose get_byte 0 is a
function that returns a single byte from a communications device. An
eight-byte double value can be extracted from the communications de­
vice through eight successive calls to get_by teO as shown in the following
function.

www.manaraa.com

Structures and Unions

union doub
{

char c[8] ;
double val;

} ;

double get_double()
{

}

extern char get_byte();
int j;
union doub d;

for (j=O; j < 8; j++)
d.c[j] = get_byte();

return d.val;

273

We store each successive character in the next element of cU. Then
when we want the double value, we access the union using the val mem­
ber.

One area of confusion among many C programmers is the difference be­
tween conversions using unions and conversions using casts. Accessing a
union through different members does not affect the actual bits in mem­
ory in any way. The compiler simply uses different interpretations for the
bits. Likewise, a cast does not affect the bits in storage. But instead of
interpreting them differently, it converts the value they represent into the
target type. The following example should make this clearer.

www.manaraa.com

274

main()
{

union {
long long_element;
float float_element;

} u;
long lng_var;
float flt_var;
lng_var = u.long_element = 10;

Chapter 8

printf("The value of lng_var cast to a float is:\
%f\n", (float) lng_var);

printf("The value of float_element after\n\
assignment to long_element is: %f\n\n",

u.float_element);

flt_var = u.float element 3.555;

printf("The value of flt_var cast to a long is: \
%d\n", (long) flt_var);

printf("The value of long_element after an \n\
assignment to float_element is: %d\n",

u.long_element);
}

The results are:

The value of lng_var cast to a float is: 10.000000
The value of float_element after
assignment to long_element is: 0.000000

The value of flt_var cast to a long is 3
The value of long_element after an
assignment to float_element is: 1074557091

In a cast, the compiler makes every attempt to preserve the true value.
So when casting a long to a float, the compiler simply adds a fractional
part equal to zero. And when casting a float to a long, the compiler
truncates the fractional part. In a union, on the other hand, the compiler
ignores the true value - it is interested only in the bit sequence. The val­
ues we receive from the program are machine dependent since they de­
pend on the way our system stores longs and floats. Both casts and un­
ions are powerful tools, but it is important not to confuse the two.

www.manaraa.com

Structures and Unions 275

Box 8-3: ANSI Feature - Initializing Unions

The K&R standard states that variables of union type may not be
initialized. However, the ANSI Standard allows unions to be in­
itialized by assigning the initialization value to the first union
component:

union init_example
{

int i;
float f;

} ;

/* Assigns 1 to test.i */
union init_example test ~ {l};

If the first component of a union is a structure, the entire struc­
ture may be initialized as in:

union u
{

} ;

struct { int i; float f; } S;
char ch[6];

•
/* Assigns 1 to test.2.S.i and 1.0 to
* test2.S.f
*/

union u test2 - { 1 , 1.0 };

8.3.2 Variant Records
The other application of unions is in creating a single structure that can
hold different types of values. For example, suppose you want to add
three additional pieces of information to the vitalstat structure:

• Are you a U.S. citizen?

• If not aU. S. citizen, what is your nationality?

• If you are a U.S. citizen, in what city were you born?

www.manaraa.com

276 Chapter 8

One way to add this information, is to declare three new fields:

struct vitalstat
{

} ;

struct vitalstat *next;
char name [19] , ssnum[II];
unsigned int vs_day: 5,

vs_month : 4,
vs_year : 11;

unsigned UScitizen : 1; /* Bit field for U.S.
citizenship */

char nationality[20];
char city_of_birth[20];

Note, however, that one of these new members will always be empty. If
the UScitizen bit is set, nationality will be empty; if UScitizen is zero,
city _oLbirth will be empty. Since these two fields are mutually exclusive,
you can have them overlap in memory by declaring a union:

struct vitalstat
{

} ;

struct vitalstat *next;
char name [19] , ssnum[II];
unsigned int vs_day: 5,

vs_month : 4,
vs_year : 11;

unsigned UScitizen : 1; /* Bit field for U.S.
citizenship */

union {
char nationality[20] ;
char city_of_birth[20];

} location;

This saves us twenty bytes of memory for each structure. For a large ar­
ray of structures, this can result in significant savings. The following
functions show how you would use the UScitizen member to decide which
union member to access The key function is get_city_info(); the other
two functions-double_check() and isyes()-are general-purpose func­
tions for processing user input. These functions make use of the runtime
function, !getc(), which reads a string from the specified file or device.
For more information about !getc() , you can read about it in Appendix
A.

www.manaraa.com

Structures and Unions 277

#include <stdio.h>
#include "v_stat2.h" /* includes location union */
#define TRUE 1
#define FALSE 0

/* Remove trailing newline (if any), and see if
* user typed the right entry.
*/

static int double_check(s)
char *s;
{

}

int last_char = strlen(s) - 1;

if (s[last_char] == '\n')
s[last_char] = 0;

printf("Is '%s' correct? (Y or N) " s);
return is_yes();

static int is_yes()
{

}

char answer[64];

while (1)
{

}

fgets(answer, sizeof(answer) , stdin);

switch (answer[O])
{

}

case 'y':
case 'Y': return TRUE;
case 'n':
case 'N': return FALSE;
default: printf("Please answer Y or N\n");

www.manaraa.com

278 Chapter 8

void get_city_info(pvs)
VITALSTAT *pvs;
{

}

int answered = FALSE;

printf("Are you a U.S. citizen? ");
pvs->UScitizen = is_yes();

while (!answered)
if (!pvs->UScitizen)
{

}

printf("What is your nationality?");
fgets(pvs->location.nationality,

sizeof(pvs->location.nationality), stdin);
answered = double_check(

pvs->location.nationality);

else /* UScitizen */
{

}

printf("Enter city of birth: ");
fgets (pvs->location. city_of_birth,

sizeof(pvs->location.city_of_birth), stdin);
answered = double_check(

pvs->location.city_of_birth);

Note that the union member accessed depends on the value of UScitizen.
This is typical of variant records, in which one member serves as a selec­
tor of union members.

www.manaraa.com

Structures and Unions 279

8.4 enum Declarations
Just as it is possible to declare tag names for structures and unions, it is
also possible to declare tag names for enum types. For instance, the dec­
laration,

enum types { INT, LONG_I NT , FLOAT, DOUBLE, POINTER };

defines the tag name types, which can then be used in future de clara -
tions. For example:

enum types tl;
enum types *ptypes; /* pointer to types enum */
enum types ar_types[5] ; /* array of types enums */
enum types f_types () ; /* function returning types

* enum
*/

You can also use a typedef:

typedef enum {
INT, LONG_I NT , FLOAT, DOUBLE, POINTER

} TYPES;

Now you can make the declarations:

TYPES tl;
TYPES *ptypes; /* pointer to TYPES enum */
TYPES ar_types[5]; /* array of TYPES enums */
TYPES f_types(); /* function returning TYPES enum */

As with typedefs of structures and unions, enum typedefs are generally
placed in a header file where they can be accessed by multiple source
files.

www.manaraa.com

280 Chapter 8

Exercises
1. In many commercial applications, integers are represented in a

form called BCD (Binary Coded Decimal). In BCD form, each
digit is represented by 4 bits. An 8-digit integer, for example,
would require 32 bits. Write two functions: one that converts in­
tegers into BCD format; and another that converts BCD integers
into their original form. Use bit fields to store each BCD digit.

2. Write a function that accepts two pointers, each to a linked list,
and concatenates the two lists, attaching the second list to the
first.

3. A stack is a special kind of list that has the following two proper­
ties:

• You can only add elements at the end of the list. This is
called pushing.

• You can only remove elements from the end of the list. This
is called popping.

Write two functions, push() and pop() , that perform these stack
tasks.

4. Stacks are called First In, Last Out (FILO) queues because the
first element pushed onto the stack is always the last one popped.
Using push(), pop(), and any other functions you need, write a
program that reads a line from the terminal and determines
whether or not it is a palindrome. A palindrome is a string that is
the same spelled forwards or backwards. For example, "Able
was I ere I saw Elba."

www.manaraa.com

Chapter 9

Functions

You are fond of argument, and now you fancy that
I am a bag full of arguments. - Socrates,
Theoetus

We have been using functions throughout the previous chapters and have
discussed in passing some of their essential features. In this chapter, we
take a more rigorous look at them and introduce some new topics, in­
cluding pointers to functions, recursion, and a new ANSI feature called
proto typing .

9.1 Passing Arguments
Arguments to a function are a means of passing data to the function.
Many programming languages pass arguments by reference, which means
they pass a pointer to the argument. As a result, the called function can
actually change the value of the argument. In C, arguments are passed
by value, which means that a copy of the argument is passed to the func­
tion. The function can change the value of this copy, but cannot change
the value of the argument in the calling routine. Figure 9-1 shows the
difference. Note that the arrows in the call-by-reference picture point in
both directions, whereas the call-by-value arrows go in only one direc­
tion. The argument that is passed is often called an actual argument,
while the received copy is called a formal argument or formal parameter.

www.manaraa.com

282

Calling Function

Actual
Argument

Actual
Argument I

Pass By Reference

address of
argument

Pass By Value

Chapter 9

Called Function

.. value of l--~.~I Formal
a~umeM A~umem -

Figure 9-1. Pass By Reference vs. Pass By Value. In Pass by
Reference, the actual and formal arguments refer to
the same memory area; In Pass By Value, the formal
argument is a copy of the actual argument.

Because C passes arguments by value, a function can assign values to the
formal arguments without affecting the actual arguments. For example:

#include <stdio.h>

maine)
{

extern void f();
int a = 2;

f (a); /* pass a copy of "a" to "f()" */
printf("%d\n", a);
exit (0) ;

}

void f(received_arg
int received_arg;
{

received_arg = 3; /* Assign 3 to argument copy */
}

In the example above, the printf() function prints 2, not 3, because the
formal argument, received_arg in fO, is just a copy of the actual argu­
ment a. C matches actual arguments in the call to the corresponding for­
mal arguments in the function definition, regardless of the names used.

www.manaraa.com

Functions 283

That is, the first actual argument is matched to the first formal argument,
the second actual argument to the second formal argument, and so on.
For correct results, the types of the corresponding actual and formal ar­
guments should be the same.

If you do want a function to change the value of an object, you must pass
a pointer to the object, and then make an assignment through the
dereferenced pointer. The following, for example, is a function that
swaps the values of two integer variables.

/* Swap the values of two int variables.
*/

void swap(x, y)

int *x, *y;
{

}

register int temp;

temp = *x;
*x *y;
*y = temp;

To call this function, you need to pass two addresses:

main()
{

}

int a = 2, b = 3;

swap (&a, &b);
printf("a = %d\t b

Executing this program yields:

a = 3 b = 2

%d\n" , a, b);

The pass-by-value method explains the purpose of the address of opera­
tor in scanf() calls. When you write,

scanf ("%d", &num);

the two arguments tell the function what type of data to read (%d indi­
cates an integer) and where to store it (at the address of num). If you
passed the variables themselves, there would be no way for scanf() to
make assignments to them. By passing the addresses, you give scanfO
access to the variables so it can assign them values.

www.manaraa.com

284 Chapter 9

9.2 Declarations and Calls
Functions can appear in a program in three forms:

Definition

Function Allusion

Function Call

A declaration that actually defines what
the function does. as well as the number
and type of arguments.

Declares a function that is defined else­
where. A function allusion specifies
what kind of value the function returns.
(With the new prototyping feature. dis­
cussed in Box 9-1. it is also possible to
specify the number and types of argu­
ments in a function allusion.)

Invokes a function. causing program
execution to jump to the invoked func­
tion. When the called function returns.
execution resumes at the point just after
the call.

9.2.1 Function Definition Syntax
Figure 9-2 shows the formal syntax of a function definition. You can
specify any number of arguments. including zero. The return type de­
faults to int if you leave it blank. However. even if the return type is into
you should specify it explicitly to avoid confusion.

If the function does not return an into you must specify the true return
type. If the function does not return any value. you should specify a re­
turn type of void. Before void became a common feature of C compil­
ers. it was a convention to leave off the return type when there was no re­
turn value. The return type would default to into but the context in
which the function was used would usually make it clear than no mean­
ingful value was returned. With modem C compilers. however. there is
no excuse for omitting the return type. If your compiler does not support
void. you should circumvent the deficiency by defining a preprocessor
macro that changes void to int:

#define void int

Not only does this make it possible to declare functions returning void.
thus aiding readability. but it also opens an avenue of upward mobility. If
at a later date you use a compiler that supports void. all you need to do is
remove the preprocessor definition. No other change to the source code
is required.

www.manaraa.com

Functions

---r-----~~ function
name

return
type

function
body

Figure 9-2. Syntax of a Function Definition.

9.2.2 Argument Declarations

285

Argument declarations obey the same rules as other variable declara­
tions, with the following exceptions:

• The only legal storage class is register.

• chars and shorts are converted to ints; floats are converted to
doubles. (With the new ANSI prototyping feature, you can dis­
able these automatic conversions.)

• A formal argument declared as an array is converted to a pointer
to an object of the array type .

www.manaraa.com

286 Chapter 9

• A formal argument declared as a function is converted to a point­
er to a function.

• You may not include an initializer in an argument declaration.

It is legal to omit an argument declaration, in which case the argument
type defaults to into This is considered very poor style, however.

There is a new syntax invented by ANSI that allows you to declare the
type of arguments when you list the parameters. For example, instead of
writing

int f(a, b, c)
int a;
char *b;
float c;
{

you could write:

int f(int a, char *b, float c)
{

This is consistent with the new prototyping syntax described in Box 9-1.
However, since it is a new feature, you should make sure your compiler
supports it before using it.

9.2.2.1 The Function Body
The body of a function is delimited by a set of right and left braces. The
only type of statement allowed outside of a function body is a declaration.

The body of a function can be empty, which can be useful in the design
stages of a software product. One of the first tasks in designing a large
program is to define a set of high-level operations that correspond to
functions. During this stage, it can be useful,to have a function that does
nothing but return, in order to serve as a placeholder for future function­
ality. These are called stubs. The following, for instance, is a legal C
function that does nothing but return when called.

void operationl(){}

Later, you can fill in the function with some meaningful code.

9.2.2.2 Return Values
Functions can return only a single value directly via the return statement,
The return value can be any type except an array or function. This means

www.manaraa.com

Functions 287

that it is possible to indirectly return more than a single value by passing a
pointer to an aggregate type. It is also possible to return a structure or
union directly, though this is not generally recommended because it is in­
efficient.

The syntax for a return statement is shown in Figure 9-3.

~~~r----------------~--~. 

LI express;on ~ 

Figure 9-3. Syntax of a return Statement. 

Many C programmers enclose the return expression in parentheses. The 
parentheses, however, are optional, and we find that they only enhance 
readability when the return value is a complicated expression. 

A function may contain any number of return statements. The first one 
encountered in the normal flow of control is executed, and causes pro­
gram control to be returned to the calling routine. If there is no return 
statement, program control returns to the calling routine when the right 
brace of the function is reached. In this case, the value returned is unde­
fined. 

The return value must be assignment-compatible with the type of the 
function . This means that the compiler uses the same rules for allowable 
types on either side of an assignment operator to determine allowable re­
turn types. For example, if f() is declared as a function returning an int, 
it is legal to return any arithmetic type, since they can all be converted to 
an into It would be illegal, however, to return an aggregate type or a 
pointer since these are incompatible types. The following example shows 
a function that returns a float, and some legal return values. 

float f () 
{ 

} 

float f2; 
int a; 
char c; 

f2 = a; 
return a; 
f2 = c; 
return c; 

/* OK, quietly converts a to float */ 
/* OK, quietly converts a to float */ 
/* OK, quietly converts c to float */ 
/* OK, quietly converts c to float */ 



www.manaraa.com

288 Chapter 9 

The C language is more picky about matching pointers. In the following 
example, 10 is declared as a function returning a pointer to a char. 
Some legal and illegal return statements are shown below: 

char *f () 
{ 

char **cpp, *cpl, *cp2, ca[IO]; 
int *ipl, *ip2; 

cpl = cp2; /* OK, types match 
return cp2; /* OK, types match 
cpl = *cpp; /* OK, types match 
return *cpp; /* OK, types match 

*/ 
*/ 
*/ 
*/ 

/* An array name without a subscript gets converted 
* to a pointer to the first element. 
*/ 
cpl = ca; /* OK, types match */ 
return ca; /* OK, types match */ 

cpl = *cp2; /* Error, mismatched types */ 
/* (pointer to char vs. char */ 

return *cp2; /* Error, mismatched types */ 
/* (pointer to char vs. char */ 

cpl = ipl; /* Error, mismatched pointer types */ 
return ipl; /* Error, mismatched pointer types */ 
return; /* Produces undefined behavior */ 

/* should return (char *) */ 
} 

Note in the last statement that the behavior is undefined if you return 
nothing. The only time you can safely use return without an expression 
is when the function type is void. 

9.2.3 Function Allusions 
A function allusion is a declaration of a function that is defined else­
where, usually in a different source file. The main purpose of the func­
tion allusion is to tell the compiler what type of value the function re­
turns. With the new ANSI prototyping feature, it is also possible to de­
clare the number and types of arguments that the function takes. This 
feature is discussed in Box 9-1. The remainder of this section describes 
the old function allusion format. Note that this older syntax will still work 
with ANSI-conforming compilers. 

By default, all functions are assumed to return an int. You are only 
strictly required, therefore, to include function allusions for functions that 



www.manaraa.com

Functions 289 

do not return an into However, it is good style to include function allu­
sions for all functions that you call. It makes it possible for a reader to 
determine what functions are called merely by looking at the declaration 
section, rather than having to wade through the entire routine. By the 
same token, you should not include function allusions to functions that 
are not called since this can be misleading. (Sometimes this is unavoid­
able, particularly when you include a header file that contains allusions to 
many functions , only a few of which you actually use.) 

The syntax for a function allusion is shown in Figure 9-4. If you omit the 
storage class, it defaults to extern, signifying that the function definition 
may appear in the same source file or in another source module. The 
only other legal storage class is static, which indicates that the function is 
defined in the same source file. The data type in the function allusion 
should agree with the return type specified in the definition. If you omit 
the type, it defaults to into Note that if you omit both the storage class 
and the data type, the expression is a function call if it appears within a 
block; if it appears outside of a block, it is an allusion: 

fl(); /* Function allusion -- default type is int */ 

main () 
{ 

f2(); /* Function call */ 

storage 
class 

data 
type 

function 
name 

Figure 9- 4. Syntax of a Function Allusion. 

Typically, a function allusion appears at the head of a block with other 
declarations . You can mix function allusions with declarations of other 
variables . For example, the following statement declares a pointer to a 
float, an array of floats, and a function returning a float. 

extern float *pflt, arr_flt[lO] , func_flt(); 



www.manaraa.com

290 Chapter 9 

Though the previous declarations are legal, it is better from a stylistic 
viewpoint to keep function declarations separate from declarations of 
variables: 

extern float func_flt(); 
extern float *pflt, arr_flt[10]; 

The scope of a function allusion follows the same rules as other variables. 
Functions alluded to within a block have block scope; functions alluded 
to outside of a block have file scope. 

Note, however, that the default storage class rules are different for func­
tions than for other variables. For example, in the following declaration, 
the storage class of pflt and arr Jlt[] defaults to auto, whereas the stor­
age class of funcJltO defaults to extern. 

{ 
float func_flt(); 
float *pflt, arr_flt[10]; 

If this declaration appeared outside of a block, pflt and arr Jlt [] would 
be global definitions, whereasfuncJltO would still be a function allusion. 

9.2.4 Function Calls 
Afunction call, also called afunction invocation, passes program control 
to the specified function. The syntax for a function call is shown in Fig­
ure 9-5. A function call is an expression, and can appear anywhere an 
expression can appear. Unless they are declared as returning void, func­
tions always return a value that is substituted for the function call. For 
example, if fO returns 1, the statement 

a = fO/3; 

is equivalent to: 

a = 1/3; 

It is also possible to call a function without using the return value. The 
statement 

fO; 

calls the functionfO, but does not use the return value. Iff 0 returns 1, 
the statement is equivalent to: 

l' , 

which is a legal C statement, although it is a no-op (no operation is per­
formed, assuming fO has no side effects). 



www.manaraa.com

Functions 291 

Normally, you would ignore the return value only if the function returns 
void . However, if you want to ignore a real return value, it is better to 
cast it to void. For example, 

(void) f () ; 

is functionally equivalent to 

f(); 

but it makes it clear to you and others that you are deliberately ignoring 
the return value. Of course, we frequently break this rule when we call 
printf() and scanfO, which both return values. The return value of 
scanf() can, in fact, be very useful since it returns the number of objects 
that are actually assigned values. Stylistically, we should probably cast 
these functions to void when we ignore the return value. In some cases, 
however, it is better to follow familiar conventions, even if they are not 
stylistically perfect. 

Figure 9-5. Syntax of a Function Call. 

9.2.4.1 Automatic Argument Conversions 

In the absence of prototyping, all scalar arguments smaller than an int 
are converted to int, and all float arguments are converted to double. If 
the formal argument is declared as a char or short, the receiving func­
tion assumes that it is getting an int, so the receiving side converts the int 
to the smaller type. If the formal argument is declared as a float, the 
receving function assumes that it is getting a double, so it converts the re­
ceived argument to float. This means that every time a char, short, or 
float is passed, at least one conversion takes place on the sending side 
where the argument is converted to int or double. In addition, the argu­
ment may also be converted again on the receiving side if the formal ar­
gument is declared as a char, short, or float . 



www.manaraa.com

292 Chapter 9 

Consider the following: 

{ 
char a; 
short b; 
float c; 

foo ( a, b, c ); /* a and b are promoted to ints, 
* and c is promoted to double . 
*/ 

foo( x, y, z ) 
char x; 

short y; 

float z; 

/* Received arg is converted from int 
to char. */ 

/* Received arg is converted from int 
to short. */ 

/* Received arg is converted from 
double to float */ 

Note that these conversions are invisible. So long as the type of the ac­
tual arguments match the types of the formal arguments, the arguments 
will be passed correctly. However, as discussed in Box 9-1, these conver­
sions can affect the efficiency of your program. Prototyping enables you 
to turn off automatic argument conversions. 

Box 9-1: ANSI Feature - Function Prototypes 
Function prototyping is a feature introduced to the C language by 
Bjarne Stroustrup of AT&T and adopted by the ANSI committee. 
(The prototyping feature is part of the C++ language. documented 
in The C++ Programming Language.) Function prototypes enable 
function allusions to include data type information about argu­
ments. This has two main benefits: 

• It enables the compiler to check that the types of the actual 
arguments in the function call are compatible with the types 
of the formal arguments specified in the function allusion. 

• It turns off automatic argument conversions. Floating types 
are not converted to double and small integers are not con­
verted to into This can significantly speed up algorithms that 
make intensive use of small integer or floating-point data. 

(continues) 



www.manaraa.com

Functions 293 

Box 9-1 (continued): 

The format for declaring function prototypes is the same as the old 
function allusion syntax except that you can enter types for each 
argument. For example, the function allusion, 

extern void func( into float. char • ); 

declares a function -that accepts three arguments-an int, a float. 
and a pointer to a char. The argument types may optionally in­
clude argument names. For example. the previous declaration 
could also be written: 

extern void func( int a. float b. char ·pc ); 

The argument names have no meaning other than to make the 
type declarations easier to read and write. No storage is allocated 
for them, and the names do not conflict with real variables with the 
same name. 

If you attempt to call this function with: 

. func ( j. x ); 

the compiler should report an error since the call contains only two 
arguments whereas the prototype specifies three arkuments. Also. 
if the argument types cannot be converted to the types specified in 
the prototype. a compilation error occurs. The rules for convert­
ing arguments are the same as for assignments (see Chapter 3). 
The following. for example. should produce an error because the 
compiler cannot automatically convert a pointer to a float. 

{ 
extern void f( int • ); 
float x; 

f( x); j. ILLEGAL -- cannot convert a float 
• to a pointer 
.j 

If the compiler can quietly convert an argument to the type of its 
prototype. it does so. In the following example. for instance. j is 
converted to a float and x is converted to a short before they are 
passed. 

(continues) 



www.manaraa.com

294 Chapter 9 

Box 9-1 (continued): 

extern void f( float. short ); 
double x; 
long j; 

f(j,x); /* OK -- long is converted to 
* float. and double is converted 
* to short. 
*/ 

Without prototyping, this example would produce erroneous results 
because fO would treat j as a float and x as a short. Prototyping 
ensures that the right number of arguments are passed, and it pro­
hibits you from passing arguments that cannot be quietly converted 
to the correct type. On the other hand. it does quietly convert ar­
guments when it can. This could result in unexpected converions 
that lead to erroneous results. Of course, this error is just as likely 
to occur without prototypes. Prototypes give you type-checking 
for certain types of data, particularly pointers, but not for integer 
and floating-point types. 

To declare a function that takes no arguments, use the void type 
specifier: 

extern int f( void) /* This function takes no 
* arguments. 
*/ 

Using Prototypes To Write More Efficient Functions 

The following example shows how prototypes can be used to write 
more efficient functions by turning off the automatic conversion of . 
floats to doubles. The mainO function is allowed to pass floats to 
sum_of_squaresO. and sum_of_squaresO is allowed to receive 
floats. This eliminates two conversions for each argument passed. 
Since there are three arguments. use of prototypes saves six con­
versions for each call to sum_of_squQresO. For functions that are 
called frequently. prototyping can result in very noticeable per­
formance improvements. 

(continues) 



www.manaraa.com

Functions 

Box 9-1 (continued): 
main() 
{ 

extern float sum_of_sQuares( float, float, 
float) ; 

float x, y, z; 

295 

printf("Enter three floating-point numbers: "); 
scanf (lI%f%f%f", &X, &y, &z ); 
printf("The sum of the squares of x, y, and z\ 

is: %f", sum_of_sQuares(x, y, z); 

float sum_of_sQuares( float a, float b, float c ) 
{ 

return (a*a)+(b*b)+(c*c); 

Prototyping a Variable Number of Arguments 

If a function accepts a variable number of arguments (prinlf() for 
example). you can use the ellipsis token" ...... The prototype for 
printf() is: • 

int printf( const char *format, ... ); 

This indicates that the first argument is a character string, and that 
there are an unspecified number of additional arguments. See 
Section A.12 for more information about referencing arguments to 
functions that take a variable number of arguments. 

9.3 Pointers to Functions 
Pointers to functions are a powerful tool because they provide an elegant 
way to call different functions based on the input data. Before discussing 
pointers to functions, however, we need to describe more explicitly how 
the compiler interprets function declarations and invocations. 

The syntax for declaring and invoking functions is very similar to the syn­
tax for declaring and referencing arrays. In the declaration, 

int ar[S]; 

the symbol ar is a pointer to the initial element of the array. When the 
symbol is followed by a subscript enclosed in brackets, the pointer is in-



www.manaraa.com

296 Chapter 9 

dexed and then dereferenced. An analogous process occurs with func­
tions. In the declaration, 

extern int f(); 

the symbol I by itself is a pointer to a function. When a function is fol­
lowed by a list of arguments enclosed in parentheses, the pointer is 
dereferenced (which is another way of saying the function is called). 
Note, however, that just as ar in, 

int ar[5]; 

is a constant pointer, so too, I in, 

extern int f(); 

is a constant pointer. Hence, it is illegal to assign a value to I. To de­
clare a variable pointer to a function, you must precede the pointer name 
with an asterisk. For example, 

int (*pf)(); /* pf is a pointer to a function 
* returning an into 
*/ 

declares a pointer variable that is capable of holding a pointer to a func­
tion that returns an into The parentheses around *pI are necessary for 
correct grouping. Without them, the declaration, 

int *pf() 

would make pi a function returning a pointer to an into 

9.3.1 Assigning a Value to a Function Pointer 
To obtain a pointer to a function, you merely enter a function name, 
without the argument list enclosed in parentheses. For example: 

{ 
extern int f1(); 
int (*pf) () ; 

pf = f1; /* assign pointer to f1 to variable pf */ 

If you include the parentheses, then it is a function call. For example, if 
you write, 

pf = f1(); /* ILLEGAL -- f1 returns an int, 
* but pf is a pointer */ 



www.manaraa.com

Functions 297 

you should get a compiler error because you are attempting to assign the 
returned value of /1 () (an int) to a pointer variable, which is illegal. If 
you write, 

pf = &f1(); /* ILLEGAL -- cannot take the address 
* of a function result. */ 

the compiler will attempt to assign the address of the returned value. 
This too is illegal. Lastly, you could write: 

pf = &f1; /* ILLEGAL -- &f1 is a pointer to 
* a pointer, but pf is a pointer to 
* an into 
*/ 

On older C compilers, this would also cause a compile error (or warning) 
because the compiler would interpret /1 as an address of a function, and 
the address of (&) operator attempts to take the address of an address. 
C does not permit this. Even if it did, the result would be a pointer to a 
pointer to a function which is incompatible with a simple pointer to a 
function. (The ANSI Standard allows this syntax by ignoring the & op­
erator.) 

We point out all of these wrong ways of assigning a pointer to a function 
because nearly everyone, in their initial stages of learning C, tries one or 
more of these possibilities. 

9.3.2 Return Type Agreement 
The other important point to remember about assigning values to func­
tion pointers is that the return types must agree. If you declare a pointer 
to a function that returns an int, you must assign the address of a func­
tion that returns an int, not the address of a function that returns a 
char, a float, or some other type. If the types don't agree, you should 
receive a compile-time error. The following example shows some legal 
and illegal function pointer assignments. 



www.manaraa.com

298 

extern int if10, if20, (*pif) 0; 
extern float ffl(), (*pff)(); 
extern char cfl(), (*pcf)(); 

mainO 
{ 

/* Legal -- types match */ 
/* ILLEGAL -- type mismatch */ 
/* ILLEGAL -- type mismatch */ 
/* Legal -- types match */ 

Chapter 9 

pif 
pif 
pff 
pcf 
ifl = 

if1; 
cf1; 
if2; 
cf1; 
if2; /* ILLEGAL -- Assignment to a constant 

*/ 
} 

9.3.3 Calling a Function Using Pointers 
To dereference a function pointer, thereby calling a function, you use the 
same syntax you use to declare the function pointer, except this time you 
include parentheses, and possibly arguments. For example: 

{ 
extern int fl(); 
int (*pf) () ; 
int answer; 

pf = f1; 
answer = (*pf)(a); /* Calls the function fl() with 

* argument a 
*/ 

As with the declaration, the parentheses around *pf in the function call 
are essential to override default precedence rules. Without them, pf 
would be a function returning a pointer to an int, rather than a pointer to 
a function. Note that the value of a dereferenced function pointer is 
whatever it was declared to be. In our case, we declared pf with the 
statement, 

int (*pf) 0 ; 

signifying that when it is dereferenced, it will evaluate to an into 



www.manaraa.com

Functions 299 

One peculiarity about dereferencing pointers to functions is that it does 
not matter how many asterisks you include: For example, 

(*pf) (a) 

is the same as: 

(****pf) (a) 

This odd behavior stems from two rules: first, that a function name by it­
self is converted to a pointer to the function; and second, that parenthe­
ses change the order of evaluation. The parentheses cause the expres­
sion, 

****pf 

to be evaluated before the argument list. Each time pI is dereferenced, it 
is converted back to a pointer because the argument list is still not pre­
sent. Only after the compiler has exhausted all of the indirection opera­
tors does it move on to the argument list. The presence of the argument 
list makes the expression a function call. 

It follows from this logic that you can dereference a pointer to a function 
without the indirection operator. That is, 

pf(a) 

should be the same as: 

(*pf) (a) 

This is, in fact, the case according to the ANSI Standard. Older compil­
ers, however, may not support this syntax. We recommend the second 
version because it is more portable, and reminds us that pI is a pointer 
variable. 



www.manaraa.com

300 Chapter 9 

9.3.4 A Generalized Sort Routine 
A common use of pointers to functions is to provide a mechanism for 
performing a number of similar operations without needlessly duplicating 
code. Suppose, for example, that you want to sort an array of ints in 
both ascending and descending order. One possibility is to write one 
function to do the sort in ascending order and another to do it in de­
scending order. However, these two functions would be almost identical. 
It would be more efficient to change only what needs to be changed with­
out duplicating everything else. 

#define FALSE 0 
#define TRUE 1 

void bubble_sort( list, list_size 
int list[], list_size; 
{ 

} 

int j, k, temp, sorted FALSE; 

while (! sorted) 
{ 

sorted = TRUE; 
for (j = 0; j < 

if (list[j] > 
{ 

/* assume list is sorted */ 
list_size - 1; j++) 
list [j+1]) 

temp = list [j] ; 
list[j] = list[j+1]; 
list[j+l] = temp; 
sorted = FALSE; 

} 
} /* end of while loop */ 

Our bubblejort() program from Chapter 5 is shown above. It is clear 
that the statement that we need to change to make it a descending sort is 
the expression, 

list[j] > list[j+1] 

If we change the "greater than" operator to "less than" 

list[j] < list[j+1] 

the function will sort in descending order. 



www.manaraa.com

Functions 301 

Rather than rewriting the entire program to make this one change, we 
can simply remove this expression, and make it into a function called 
compareO. Then we change the statement in bubble_sortO to: 

if ( compare(list[j], list[j+l] ) 

If the sort is in ascending order, compare 0 should return 1 when list [jJ is 
greater than list[j+l]; otherwise it should return O. For descending sorts, 
the return value should be reversed. So we need two compare functions: 

/* Compare two integers and return 1 if a is greater 
* than b -- use for ascending sorts. 
*/ 

int compare_ascend( a, b ) 
int a,b; 
{ 

return a > b; 
} 

/* Compare two integers and return 1 if a is less 
* than b -- use for descending sorts. 
*/ 

int compare_descend( a, b ) 
int a,b; 
{ 

return a < b; 
} 

This doesn't completely solve the problem, however. We have abstracted 
the differences between an ascending and descending sort into two small 
functions, but we haven't created a mechanism to dynamically select one 
of these functions. We could change the compareO call in the bub­
ble_sortO function to either compare_ascendO or compare_descendO, 
but how can we make it choose one or the other depending on which sort 
we desire? 

The solution lies in pointers to functions. Specifically, we need to make 
compare a pointer to a function capable of pointing to either com­
pare _ascend 0 or compare_descend (). Then we can add another argu­
ment to bubble_sort () indicating whether the sort is to be in ascending or 
descending order. To declare compare as a pointer to a function that re­
turns an int, you would write: 

int (*compare)(); 



www.manaraa.com

302 Chapter 9 

Using compare as a pointer to a function, we can rewrite bubble_sortO as 
follows: 

#define FALSE 0 
#define TRUE 1 

void bubble_sort( list, list_size, compare) 
int list[], list_size; 
int (*compare)(); 
{ 

} 

int j, k, temp, sorted FALSE; 

while (! sorted) 
{ 

sorted = TRUE; /* assume list is sorted */ 
for (j = 0; j < list_size-l; j++) 

if «*compare)( list[j], list[j+l]) ) 
{ 

} 

temp = list [j] ; 
list[j] = list[j+l]; 
list[j+l] = temp; 
unsorted = 1; 

} /* end of while loop */ 

This makes the program smaller and more straightforward. Note that we 
do not need to declare compare_ascendO and compare_descend() be­
cause the address of one or the other is being passed directly to bub­
blejortO. However, this puts a burden on the calling function since it 
must know the addresses of these two functions. For example, you might 
call bubblejortO as follows to sort an array in descending order: 

maine ) 
{ 

extern void bubble_sort(); 
extern int compare_ascend(), compare_descend(); 
static int list[] = {I, 0, 5, 444, -332, 76 }; 

#define LIST_SIZE (sizeof(list)/sizeof(list[O]» 

} 

bubble_sort ( list, LIST_SIZE, compare_descend ); 
exit ( 0 ); 

To pass a pointer to compare_descend ° , we just enter the function name 
without the parentheses. 



www.manaraa.com

Functions 303 

Since sorting is such a common task, it probably makes sense to put all 
the declarations for the sort function into a header file. For example, we 
could create a file called sort.h that contains the following: 

#define ASCEND compare_ascend 
#define DESCEND compare_descend 

extern void bubble_sort(); 
extern int compare_ascend(), compare_descend(); 

Rewriting the mainO function using this header file, we get: 

#include "sort.h" 

mainO 
{ 

static int list[] = {l, 0, 5, 444, -332, 76 }; 
#define LIST_SIZE (sizeof(list)/sizeof(list[O]» 

} 

bubble_sort ( list, LIST_SIZE), DESCEND ); 
exit ( 0 ); 

This is superior to the previous version for a number of reasons. First, it 
makes it easier to call bubble_sort 0 from other functions since all you 
need to do is include the header file. Second, it hides the names and 
data types of the comparison functions. If, for some reason, you want to 
change the names at a later date, you need only change the header file to 
broadcast the change to all source files. Without the header file, you 
would need to search through every module to find all the places where 
compare_ascendO and compare_descendO are declared and invoked. 

It may seem that we have gone to a lot of trouble just to make bub­
ble jort 0 general enough to sort in either ascending or descending or­
der. Wouldn't it have been easier, after all, to write two separate func­
tions? The answer is probably yes. In this particular instance, it is ques­
tionable whether it is really worth generalizing bubble_sortO. We did it 
more to illustrate some important principles and techniques than to im­
prove our code. The runtime library, however, contains a much more 
generalized sort function called qsortO which makes more practical use 
of pointers to functions. Not only can it sort objects in a user-defined or­
der, but it can also sort objects of any data type. See Section A.14.5 for 
more about qsort O. 



www.manaraa.com

304 Chapter 9 

9.3.5 Returning Pointers to Functions 
A function may return a pointer to a function. However, you must de­
clare the type of the function properly. For example, the following de­
clares a function that returns a pointer to a function that returns an into 

int (*f( x, y » () /* f is a function with 
* arguments x and y, returning 
* a pointer to a function 
* returning an into 
*/ 

float x, y; 
{ 

As an example of when you might use this construct, consider the case 
where you need to sort many files of data. We already mentioned that 
there are several sorting algorithms, each of which is best with certain 
types of data. A quicksort, for example, is very fast with randomly ar­
ranged data, but is inefficient if the data is already largely sorted. For 
data that is already in approximately sorted order, a merge sort is one of 
the most efficient algorithms. If the array to be sorted is very large, on 
the other hand, a heap sort might be best since it requires the minimum 
amount of memory. (See Computing Algorithms by Donald Knuth for a 
detailed discussion.) 

Suppose, then, that we have three functions-quick_sortO, merge_sortO, 
and heap_sortO-and another function, called best_sortO, which is ca­
pable of sampling an array to determine which sort method is most effi­
cient for a particular set of data. We can write best_sortO so that it re­
turns a pointer to one of the three sort functions: 

void (* best_sort(list» ( 
float list[l; 
{ 

} 

extern void quick_sort(), merge_sort(), 
heap_sort(); 

/* Analyze data */ 
/* If quick sort is best */ 

return quick_sort; 

/* Else if merge sort is best */ 
return merge_sort; 

/* Else if heap sort is best */ 
return heap_sort; 



www.manaraa.com

Functions 305 

To sort an array, you would invoke one of the sort functions as shown be­
low: 

void sort_array( list ) 
float list [] ; 
{ 

extern void (* best_sort(»(); 

(best_sort ( list »( list ); 
} 

Note that the argument list appears twice - once for the best_sortO 
function, and once for the sorting function whose address best_sort 0 re­
turns. 

There are, of course, other ways to perform the same functionality with­
out using pointers to functions. One advantage of using pointers; how­
ever, is that we remove all decision-making from the sort_arrayO func­
tion. If we want to add new sorting functions, the only routine we need 
to change is best jort 0 . 

One thing you must be careful about when using pointers to functions is 
to make sure that assignment types agree with declaration types. This 
can become difficult as declarations become more and more complex. In 
the following example, we attempt to return a pointer to a function that 
returns a pointer to a function that returns an int, when what is expected 
is simply a pointer to a function that returns an into It is worth spending 
a few moments to make sure that you understand this example. We dis­
cuss complex declarations such as these in more detail in Section 9.6. 



www.manaraa.com

306 Chapter 9 

int (*fO) 0 /* f is a function that returns 
* a pointer to a function that 
* returns an into 

{ 

} 

*/ 

extern int f1(); /* f1 is a function that returns 
* an into 
*/ 

extern int (* f2(»(); /* f2 is a function that 
* returns a pointer to a 
* function that returns 
* an into 
*/ 

int (*pf)(); /* pf is a pointer to a function 
* that returns an int 
*/ 

pf = fl; /* OK, types match. 
return f1; /* OK types match. 
pf = f2; /* Error, mismatched pointer types. 
return f2; /* Error, mismatched pointer btypes 

*/ 
*/ 
*/ 
*/ 

9.4 Recursion 
A recursive function is one that calls itself. For example: 

void recurse() 
{ 

} 

static count 1; 

printf ("%d\n", count); 
count++; 
recurseO; 

mainO 
{ 

extern void recurse(); 

recurseO; 
} 



www.manaraa.com

Functions 307 

What will this program do? First it prints the value of count, which is 1; 
then it increments count; then it calls itself. The second time through, 
count equals 2. This repeats ad infinitum. The output will be: 

1 
2 
3 
4 
5 

At some point, the computer will run out of stack memory, and the pro­
gram will abort with a runtime error. This illustrates an important point 
about recursive programming: you must include a stop point or the pro­
gram will-run forever (or until it runs out of memory). For example, we 
can modify the previous function so that it only calls itself three times: 

void recurse() 
{ 

} 

static count 1; 

if (count> 3) 
return; 

else 
{ 

} 

printf ( "%d\n", count ); 
count ++; 
recurseO; 

main( ) 
{ 

extern void recurse(); 

recurseO; 
} 

The condition that ends the recursion (count being greater than 3) is 
called the base case. Note that the program would not end if count were 
automatic rather than fixed because it would dynamically create a new 
variable called count and reinitialize it to 1 with each call. This is an im­
portant aspect of recursion: for each new call, the compiler creates a 
whole new set of automatic variables. Even though they have the same 
name, they refer to different memory areas. 



www.manaraa.com

308 Chapter 9 

9.4.1 The Return Value in Recursive Calls 
Using fixed variables is one way to control recursion. Another method is 
to use the input value. The program below, for example, uses recursion 
to compute the sum of integers from 1 to n. 

int sum(n) 
int n; 
{ 

} 

if (n <= 1) 

return n; 
else 

return (n + sum(n-1»; 

It is useful to step through the function, observing what value gets re­
turned with each call . If we pass the function the value 5, the call trace 
shown in Figure 9-6 occurs. 

Sur<S) 15, 

5 + SUf(4) 10 

4 + sum(3) 6 

• 3 + sum(2) 3 . " 2 + sum(1) --.1 

Figure 9-6. Recursion. Call trace of sumO function when argument 
is 5. 

Note that no call returns until all of its sub-calls have returned. In our 
example, this doesn't occur until n is less than or equal to 1, at which 
time, the function unwinds itself. First it returns 1, which is added to 2, 
returning the value 3, which is added to 3 to return 6, which is added to 4 
to return 10, which is added to 5 to return 15. 

Recursive programs are difficult to conceptualize at first, but they are 
very powerful. They form the basis of artificial intelligence languages 
such as LISP and Prolog. 

You can always use looping constructs to get the same effect as recursion, 
but the program is often much simpler and easier to read when imple­
mented recursively. Recursion, however, is not necessarily more efficient 
since the the computer must allocate additional stack space for each call. 



www.manaraa.com

Functions 309 

If the recursion is deep enough, the program will run out of stack mem­
ory and abort. 

9.5 The main() Function 
All C programs must contain a function called mainO, which is always 
the first function executed in a C program. When main 0 returns, the 
program is done. The compiler treats the mainO function like any other 
function, except that at runtime, the host environment is responsible for 
providing two arguments. The first, usually called argc by convention, is 
an iot that represents the number of arguments that are present on the 
command line when the program is invoked; the second, called argv by 
convention, is an array of pointers to the command line arguments. 

The following program uses argc and argv [] to print out the list of argu­
ments supplied to it when it is invoked: 

/* echo command line arguments */ 
main( argc, argv ) 
int argc; 
char *argv[]; 
{ 

} 

while (--argc > 0) 
printf ( "%s" *++argv); 

printf ( "\n" ); 
exit ( 0 ); 

In UNIX systems, there is a program like this called echo. So, if you 
write at the command line, 

echo Alan Turing was a father of computing. 

the system prints: 

Alan Turing was a father of computing. 

Note that a pointer to the command itself is stored in argv [OJ. This is 
why we use the prefix increment operator rather than the postfix operator 
to increment argv. Otherwise, the name of the command, echo, would 
be printed first. 

When you invoke a program, each command line argument must be 
separated by one or more spaces. Note that the command line argu­
ments are always passed to mainO as character strings. If the arguments 
are intended to represent numeric data, you must explicitly convert them. 
Fortunately, there are several functions in the runtime library that con­
vert a string into its numeric value. The function atoiO, for example, 



www.manaraa.com

310 Chapter 9 

converts a string into an int, and atof() converts a string into a float. 
The following program takes two arguments, and returns the first to the 
power of the second: 

#include <math.h> 

main( argc, argv 
int argc; 
char *argv[]; 
{ 

} 

float x, y; 

if (argc < 3) 
{ 

} 

printf( "Usage: power <number>\n" ); 
printf( "Yields argl to arg2 power\n" ); 
return; 

x = atof( *++argv ); 
y = atof( *++argv ); 
printf( "%f\n", pow( x, y»; 

The pow() function is part of the runtime library. We show more exam­
ples of using the command line arguments when we discuss file I/O in 
Chapter 11. 

9.6 Complex Declarations 
Declarations in C have a tendency to become complex, making it difficult 
to determine exactly what is being declared. The following declaration, 
for instance, declares x to be a pointer to a function returning a pointer 
to a 5-element array of pointers to ints: 

int *(*(*x)(»[5]; 

One way to avoid complex declarations such as this one is to create inter­
mediate typedefs, as shown on the following page. 



www.manaraa.com

Functions 311 

typedef int *AP[5]; /* 5-element array of pointers 
* to ints. 
*/ 

typedef AP *FP(); /* Function returning pointer to 
* 5-element array of pointers 
* to ints. 
*/ 

FP *x /* Pointer to function returning 
* pointer to 5-element array of 
* pointers to ints. 
*/ 

The main reason that complex declarations look so forbidding in C is that 
the pointer operator is a prefix operator, whereas the array and function 
operators are postfix operators. As a result, the variable becomes sand­
wiched between operators. To compose and decipher complex declara­
tions, you must proceed inside-out, adding asterisks to the left of the 
variable name, and parentheses and brackets to the right of the variable 
name. It is also important to remember the following two binding and 
precedence rules: 

1. The array operator [ ] and function operator 0 have a higher 
precedence than the pointer operator (*). 

2. The array and function operators group from left to right, 
whereas the pointer operator groups from right to left. 

9.6.1 Deciphering Complex Declarations 
The best strategy for deciphering a declaration is to start with the variable 
name by itself and then add each part of the declaration, starting with the 
operators that are closest to the variable name. In the absence of paren­
theses to affect binding, you would add all of the function and array op­
erators on the right side of the variable name first (since they have higher 
precedence), and then add the pointer operators on the left side. The 
declaration, 

char *x[]; 

would be deciphered through the following steps: 

1. x[] is an array. 

2. *x[] is an array of pointers. 

3. char *x[] is an array of pointers to chars. 



www.manaraa.com

312 Chapter 9 

Parentheses can be used to change the precedence order. For example, 

int (*x[])(); 

would be decomposed as follows: 

1. x[] is an array. 

2. (*x[]) is an array of pointers. 

3. (*x[]) () is an array of pointers to functions. 

4. int (*x[ ]) 0 is an array of pointers to functions returning ints. 

If this declaration had been written without the parentheses as: 

int *x [] () ; 

it would have been translated as: 

an array of functions returning pointers to ints 

which is an illegal declaration since arrays of functions are invalid. 

9.6.2 Composing Complex Declarations 
To compose a declaration, you perform the same process. For example, 
to declare a pointer to an array of pointers to functions that return 
pointers to arrays of structures with tag name S, you could use the fol­
lowing steps: 

1. (*x) is a pointer. 

2. (*x) [] is a pointer to an array. 

3. (* (*x[]) is a pointer to an array of pointers. 

4. (* (*x)[]) () is a pointer to an array of pointers to functions. 

5. (* (* (*x) []) (») is a pointer to an array of pointers to functions 
returning pointers. 

6. (* (* (*x) []) (»)[] is a pointer to an array of pointers to func­
tions returning pointers to arrays. 

7. struet S (* (* (*x) []) ())[] is a pointer to an array of pointers to 
functions returning pointers to arrays of structures with tag 
name S. 

Note that we add parentheses for binding each time we add a new pointer 
operator. 



www.manaraa.com

Functions 

int i; 
int *p; 
int all ; 
int fO; 
int **pp; 
int (*pa) [] ; 
int (*pf) 0 ; 
int *ap[] ; 
int aa[] []; 
int af[] 0 ; 
int *fp 0 ; 
int faO [] ; 
int ffO 0 ; 

int ***ppp; 
int (**ppa) []; 
int (**ppf) 0 ; 
int * (*pap) [] ; 
int (*paa) [] [] ; 
int (*paf) [] 0 ; 

int * (*pfp) 0 ; 
int (*pfa) 0 [] ; 

int (*pff) 0 0 ; 

int **app[] ; 
int (*apa[]) []; 
int (*apf[])O; 
int *aap[] [] ; 
int aaa[] [] []; 
int aaf [] [] 0 ; 

int *afp[] 0; 
int afa[]O[]; 

int aff[] 0 0; 

int **fpp 0 ; 
int (*fpao)[]; 
int (*fpf 0) 0 ; 

int *fapO []; 

int faaO [] [] ; 

int fafO [] 0; 

int *ffp () 0 ; 

An lnt 
A pointer to an int 
An array of ints 
A function returning an lnt 
A pointer to a pointer to an lnt 
A pointer to an array of Ints 
A pointer to a function returning an Int 
An array of pointers to lnts 
An array of arrays of Ints 

313 

An array of functions returning Ints (ILLEGAL) 
A function returning a pointer to an Int 
A function returning an array of ints (ILLEGAL) 
A function returning a function returning an Int 
(ILLEGAL) 
A pointer to a pointer to a pointer to an Int 
A pointer to a pointer to an array of Ints 
A pointer to a pointer to a function returning an Int 
A pointer to an array of pointers to Ints 
A pointer to an array of arrays of Ints 
A pointer to an array of functions returning Ints 
(ILLEGAL) 
A pointer to a function returning a pointer to an Int 
A pointer to a function returning an array of Ints 
(ILLEGAL) 
A pointer to a function returning a function 
returning an Int (ILLEGAL) 
An array of pointers to pointers to Ints 
An array of pointers to arrays of Ints 
An array of pointers to functions returning ints 
An array of arrays of pointers to Ints 
An array of arrays of arrays of ints 
An array of arrays of functions returning Ints 
(ILLEGAL) 
An array of functions returning pointers to Ints 
An array of functions returning arrays of Ints 
(ILLEGAL) 
An array of functions returning functions returning 
Ints (ILLEGAL) 
A function returning a pointer to a pointer to an Int 
A function returning a pointer to an array of Ints 
A function returning a pointer to a function 
returning an int 
A function returning an array of pointers to lnts 
(ILLEGAL) 
A function returning an array of arrays of Ints 
(ILLEGAL) 
A function returning an array of functions 
returning Ints (ILLEGAL) 
A function returning a function returning a pointer 
to an Int (ILLEGAL) 

Table 9-1. Legal and Illegal Declarations in C. 



www.manaraa.com

314 Chapter 9 

Exercises 
1. Modify the echo program so that it prints out the arguments in 

capital letters if the -c or -C switch is present when the program 
is executed. (Note that the switch should be the first argument, 
and should not be echoed.) 

2. Enhance the program obtained from exercise 1 so that it will 
work even if the switch is not the first argument. 

3. Write a recursive version of strlen (). Is the recursive version bet­
ter or worse than the iterative version in Chapter 5? Explain 
your answer. 

4. Write a recursive version of strcpy () . Is the recursive version 
better or worse than the iterative version in Chapter 5? Explain 
your answer. 

5. Write a recursive function that computes the greatest common di­
visor of two positive integers. 

6. Write an iterative version of Exercise 5. 

7. Write a recursive function that accepts a pointer to a string as its 
argument, turns the string into a linked list of characters, and re­
turns a pointer to the first character in the list. 

8. Write a recursive function that counts the number of elements in 
a linked list. The argument should be a pointer to the first ele­
ment of the list, and the return value should be an iot. 

9. Write a recursive function that prints the data value of each ele­
ment in a linked list. 

10. Write a recursive function that accepts two pointers, each to a 
linked list, and concatenates the two lists, attaching the second 
list to the first. 

11. Using pointers to functions, write a general find () function for 
linked lists. (See Chapter 9 for an example of a specialized 
find() function.) 



www.manaraa.com

Functions 315 

12. Decipher the following declarations. Which are iegal and which 
are illegal? ~y? 

a) * (*xO) [] 
b) * (**x)[] 
c) (*(*(*xO)[])O) 
d) **x[] () 
e) * (x[]) [] 
f) *(*(xO)(» 

13. Write prototypes for functions that take the following arguments: 

a) 'Two arguments: a fioat; and a pointer to a char. 
b) Two arguments: a pointer to an array of ints; and a pointer 

to a function returning im unsigned long. 
c) One argument: a pointer to a function returning a pdinter to 

a char. 
d) Three Arguments: a pointer to struct of type S; a pointer to 

an array of chars; and a pointer to an array of functions 
returning pointers to functions returning ints. 

e) Two arguments: a char and an enum declared as: 

enum boolean { TRUE, FALSE }; 



www.manaraa.com

Chapter 10 

The C Preprocessor 

If language be not in accordance with the truth of 
things, affairs cannot be carried on to success. 
Confucious, Analects 

You can think of the C preprocessor as a separate program that runs be­
fore the compiler, with its own simple, line-oriented grammar and syn­
tax. In previous chapters, we introduced two preprocessor directives-the 
#define command for naming a constant, and the #include command for 
including additional source files. This chapter discusses both of these di­
rectives in greater detail, and also describes other preprocessor directives 
that have not been mentioned yet. Briefly, the preprocessor gives you 
the following capabilities: 

• Macro processing. 

• Inclusion of additional C source files. 

• "Conditional compilation," which enables you to conditionally 
compile sections of C source contingent on the value of an arith­
metic expression. 

All preprocessor directives begin with a pound sign (#) which must be the 
first non-space character on the line. They may appear anywhere in the 
source file-before, after, or intermingled with regular C language state­
ments. However, the pound sign (#), which denotes the beginning of a 
preprocessor directive, must be the first non-space character on the line. 



www.manaraa.com

The Preprocessor 317 

Unlike C statements, a macro command ends with a newline, not a semi­
colon (see Box 10-2). To span a macro over more than one line, enter a 
backslash immediately before the newline, as in: 

#define LONG_MACRO "This is a very long macro that\ 
spans two lines." 

Box 10-1: ANSI Feature - Flexible Formatting of 
Preprocessor Lines 

Older compilers have strict requirements concerning the format of 
preprocessor commands. The pound sign must appear in column 
1, and no space is allowed between the pound sign and the 
preprocessor command. The ANSI Standard removes both of 
these restrictions. The only constraint imposed by the ANSI Stan­
dard is that the pound sign must be the first non-space or non-tab 
character. The following commands, for example, are supported 
by the ANSI Standard, but may be illegal on older compilers. 

# include <stdio.h> 
# include <ctype.h> 

1 0.1 Macro Substitution 
A macro is a name that has an associated text string, called the macro 
body. By convention, macro names that represent constants should con­
sist of uppercase letters only. This makes it easy to distinguish macro 
names from variable names, which should be composed of lowercase 
characters. In the following example, BIG_BUF is the macro name and 
512 is the macro body. 

#define BIG_BUFF 512 

When a macro name appears outside of its definition (referred to as an 
invocation), it is replaced with its macro body. The act of replacement is 
referred to as macro expansion. For example, having defined 
BIG_BUFF, you might write: 

char buf[BIG_BUFF] ; 

During the preprocessing stage, this line of code would be translated into: 

char buf[512]; 



www.manaraa.com

318 Chapter 10 

Box 10-2: Bug Alert - Ending a Macro Definition 
With a Semicolon 

One of the most common bugs is to place a semicolon at the end 
of a macro definition, as in: 

#define SIZE 10; 

The semicolon becomes part of the replacement string, so that a 
statement like, 

x = SIZE; 

expands to: 

x = 10;; 

This programming error will actually go unnoticed by the compil­
er, which will interpret the second semicolon as a null statement. 
The following, however, will cause a compile-time parsing error: 

int array [SIZE] ; 

What makes this bug so difficult to find is that the line on which 
the error is reported looks perfectly legal. The most pernicious 
example of this type of bug occurs when the resulting syntax, af­
ter replacement, is legal but is semantically different from what 
was intended. For example: 

#define GOOD_CONDITION (var == 1); 

while GOOD CONDITION 
foo () ; 

This expands to: 

while (var 1); 
foo () ; 

The semicolon after (var == 1) is interpreted as a null statement, 
and more important, as the body of the while loop. As a result, 
the call t%oO is not part of the while body. If var equals one, 
you wil get an infinite loop. 

Most compilers have a command line option that lets you exe­
cute just the preprocessor. This makes it much easier to find this 
type of bug because you can inspect the source code after all of 
the macros have been expanded. 



www.manaraa.com

The Preprocessor 319 

The simplest and most common use of macros is to represent numeric 
constant values. It is always bad practice to write constants in a source 
file since the constant's purpose is lost. For example, consider the fol­
lowing: 

static char in_buf[256]; 
main( ) 
{ 

for (a = 0; a < 256 ; a++) 
in_buf[a] getchar(); 

The two occurrences of 256 seem innocuous enough, but if the occur­
rences are far apart in a large program, perhaps even in separate files, it 
becomes difficult to maintain the program. If you want to change the ar­
ray size, you need to find every 256 in the program, and then make sure 
that it's the right 256. A better way to write the function is: 

#define MAX_INPUT_BUFFER_SIZE 256 

static char in_buf[MAX_INPUT_BUFFER_SIZE]; 
mainO 
{ 

for (a = 0; a < MAX_INPUT_BUFFER_SIZE a++) 
in_buf[a] getchar(); 

As with choosing names for variables, it is important to choose a macro 
name that corresponds to its use. According to the ANSI Standard, 
macro names are unique up to at least 31 characters, so you should use 
as many characters as it takes to describe the macro's function. 

The preceding example illustrates a simple form of a macro, in which the 
macro serves as a name for a constant. There is another form of macros 
that is similar to a C function in that it takes arguments that can be used 
in the macro body. The syntax for this type of macro is shown in Figure 
10-1. 



www.manaraa.com

320 Chapter 10 

macro 
argument 

Figure 10-1. Syntax of a Function-Like Macro . 

For example, you could write : 

#define MUL_BY_TWO(a) «a) + (a» 

Then you can use MUL_BY_TWO in your program just as you would use 
a function. For example, the macro invocation, 

is translated by the preprocessor into: 

j = «5) + (5»; 

The actual argument 5 is substituted for the formal argument a wherever 
it appears in the macro body. The parentheses around a and around the 
macro body are necessary to ensure correct binding when the macro is 
expanded (see Box 10-7) . There is actually some justification for this 
macro since it reduces a multiplication operation into an addition opera­
tion, which is faster. 

Note that macro arguments are not variables-they have no type, and no 
storage is allocated for them. Consequently, macro arguments do not 
conflict with variables that have the same name. The following, for ex­
ample, is perfectly legal: 

j = MUL_BY_TWO(a-I); 

which, after expansion, becomes: 

j = «a-I) + (a- I»; 

In general, macros execute more quickly than functions because there is 
none of the function overhead involved in copying arguments and main­
taining stack frames. When trying to speed up slow programs, therefore, 
you should be on the lookout for small, heavily used functions that can 
be implemented as macros. For example, one of our first functions in 
this book (Chapter 3) was a function that converts a letter from 



www.manaraa.com

The Preprocessor 321 

uppercase to lowercase. Assuming an ASCII character set, we can re­
write it as: 

#define TO_LOWER(c) «c) - ('a' - 'A'» 

Converting functions to macros will have a noticeable impact on execu­
tion speed only if the function is called frequently. 

Box 10-3: Bug Alert - Using = to Define a Macro 

A common mistake made in defining macros is to use the assign­
ment operator as if you were initializing a variable. Instead of writ­
ing, 

#define MAX 100 

you write: 

#define MAX = 100 

This type of mistake can lead to obscure bugs. For example, the 
expression, 

for (j=MAX; j > 0; j--) 

would expand to: 

for (j== 100; j > 0; j--) 

Suddenly, the assignment is turned into a relational expression. 
The expression is legal, so the compiler will not complain, making 
the error difficult to track down. 

10.1.1 No Type Checking for Macro Arguments 
From an operational point of view, the macro MUL_BY_TWO may seem 
identical to the following function: 

int mul_by_two( a ) 
int a; 
{ 

return a+a; 
} 

However, there is one significant difference-there is no type checking 
for macros. In the function version of muCby _two, you must pass an in­
tegral value, and the function must return an int. In the macro version, 
you can substitute any type of value for a. 



www.manaraa.com

322 Chapter 10 

Suppose, for example, that f is a float variable. If you write, 

the preprocessor translates it into: 

f= «2.5) + (2.5»; 

which assigns the value 5.0 to f. In contrast, if you write, 

the compiler takes one of two actions, depending on whether function 
prototypes are being used. In the presence of prototyping, the compiler 
converts 2.5 into an int, giving it a value of 2; adds two and two together, 
and returns 4 instead of 5.0. Without function prototypes, the compiler 
passes a double-precision 2.5 tq the function, which interprets it as an 
into This produces unpredictable results. 

Box 10-4: Bug Alert - Space Between Left 
Parenthesis and Macro Name 

Note in Figure 10-1 that the left parenthesis must come immedi­
ately after the macro name, without any intervening spaces. Inser­
tion of a space usually results in a compile-time error, but occa­
sionally obscure bugs can result. Consider the following macro: 

The expression, 

j = neg a plus_f(x); 

expands to: 

j = -(x) + f; 

But watch what happens if we accidentally insert a space between 
the left parenthesis and the macro name in the definition: 

Now, the expression expands to: 

j = (a) -(a) + f(x); 

If a is a variable name and f is a function name, this will look like a 
perfectly legal expression to the compiler. 



www.manaraa.com

The Preprocessor 323 

The lack of type checking for macro arguments can be a powerful feature 
if used with care. Consider the following macro, which returns the lesser 
of two arguments: 

#define min( a, b ) «a) < (b) ? (a) : (b» 

Note that this works regardless of whether a and b are integers or float­
ing-point values. It is extremely difficult to write an equivalent function 
that works for all data types. 

Anoth~r difference between macros and functions is that the preproces­
sor checks to make sure that the number of arguments in the definition is 
the same as the number of arguments in the invocation. The C compiler 
only does this type of checking for functions if you use the ANSI 
prototyping syntax in the function declaration. For example, the state­
ment, 

MUL_BY_TWO (x, y); 

would produce a compile-time error. The analogous statement, 

mul_by_two(x, y); 

would produce a compile-time error only if the function is declared with 
the ANSI prototyping syntax. Otherwise, this statement would compile 
without errors, but would produce unpredictable results when executed. 

10.1.2 Removing a Macro Definition 
Once defined, a macro name retains its meaning until the end of the 
source file, or until it is explicitly removed with an #under directive. The 
most typical use of #under is to remove a definition so you can redefine it 
(see Section 10.2.1). 

According to the ANSI Standard and most existing C compilers, it is ille­
gal to redefine a macro without an intervening #under statement, unless 
the two definitions are the same. This is a useful rule because it enables 
you to define the same macro in different header files. If you include 
multiple header files (and hence, multiple definitions of the same mac­
ro), your compiler will complain only if the definitions conflict. 



www.manaraa.com

324 Chapter 10 

Box 10-5: ANSI Feature - Using a Macro Name in 
Its Own Definition 

Most older C compilers don't allow you to use a macro name in 
the body of its own definition. The following definition, for ex­
ample, would fail because the compiler would try to expand sqrt 
in the body: 

#define sqrt(x) ( (x < 0) ? sqrt(-x) : sqrt(x) ) 

The ANSI Standard supports this syntax, but states that if a "mac­
ro name appears in its own definition, it will not be expanded. 
This avoids the problem of infinite expansion. According to 
ANSI rules, therefore, the statement, 

y = sqrt( 5 ); 

would expand to: 

y = ( (5 < 0 ? sqrt(-5) : sqrt(5) ); 

As a result, the sqrt () function would be called with 5 as the argu­
ment. Note that using a macro name in its own body makes sense 
only if there is a function with the same name. 

10.1.3 Macros vs. Functions 
Macros and functions are similar in that they both enable a set of opera­
tions to be represented by a single name. Sometimes it is difficult to de­
cide whether to implement an operation as a macro or as a function. The 
following lists summarize the advantages and disadvantages of macros 
compared to functions. 

Advantages 

1) Macros are usually faster than functions since they avoid the 
function call overhead. 

2) The number of macro arguments is checked to match the defini­
tion. (The C compiler also does this for functions if you use the 
new ANSI prototyping syntax. However, this feature may not be 
available on your compiler.) 

3) No type restriction is placed on arguments so that one macro may 
serve for several data types. 



www.manaraa.com

The Preprocessor 325 

Disadvantages 

1) Macro arguments are re-evaluated at each mention in the macro 
body, which can lead to unexpected behavior if an argument 
contains side effects (see Box 10-6). 

2) Function bodies are compiled once so that mUltiple calls to the 
same function can share the same code without repeating it each 
time. Macros, on the other hand, are expanded each time they 
appear in a program. As a result, a program with many large 
macros may be longer than a program that uses functions in place 
of the macros. 

3) Though macros check the number of arguments, they don't 
check the argument types. ANSI function prototypes check both 
the number of arguments and the argument types. 

4) It is more difficult to debug programs that contain macros be­
cause the source code goes through an additional layer of transla­
tion, making the object code even further removed from the 
source code. 

Box 10-6: Bug Alert - Side Effects in Macro 
Arguments 

A potential hazard of macros involves side-effect operators in ar­
gument expressions. Suppose, for instance that we invoke the 
min macro as follows: 

a = min( b++, C ); 

The preprocessor translates this into: 

a = « b++) < (C) ? (b++) : C); 

If b is less than c, it gets incremented twice, obviously not what is 
intended. To be on the safe side, you should never use a side­
effect operator in a macro invocation. Side-effect operators in­
clude the increment and decrement operators, the assignment 
operators, and function invocations. 



www.manaraa.com

326 

Box 10-7: Bug Alert - Binding of Macro 
Arguments 

Chapter 10 

A potential problem with macros is that argument expressions 
that are not carefully parenthesized can produce erroneous re­
sults due to operator precedence and binding. Consider the fol­
lowing macro: 

#define square( a ) a * a 

square has the advantage that it will work regardless of the argu­
ment data types. However, watch what happens when we pass it 
an arithmetic expression: 

j = 2 * square ( 3 + 4 ); 

expands to: 

j = 2 * 3 + 4 * 3 + 4; 

Because of operator precedence, the compiler interprets this ex­
pression as: 

j = (2 * 3) + (4 * 3) + 4; 

which assigns the value of 22 to j, instead of 98. To avoid this 
problem, you should always enclose the macro body and macro 
arguments in parentheses: 

#define square( a ) «a) * (a» 

Now, the macro invocation expands to: 

j = 2 * «3 + 4) * (3 + 4»; 

which produces the correct result. 

10.1.4 Built-In Macros 
The ANSI Standard defines five macro names that are built into the 
preprocessor. Each name begins and ends with two underscore charac­
ters. You may not redefine or #undef these macros. (These macros may 
not be supported by older compilers.) 

Expands to the source file line number on which 
it is invoked. 

Expands to the name of the file in which it is in­
voked. 



www.manaraa.com

The Preprocessor 327 

Expands to the time of program compilation. 

_DATE_ 

_STDC_ 

Expands to the date of program compilation. 

Expands to the constant 1 if the compiler con­
forms to the ANSI Standard. 

The _LINE_ and _FILE_ macros are available in most older compil­
ers. The _TIME_, _DATE_, and _STDC_ macros are more re­
cent ANSI additions to the C preprocessor. 

The _LINE_ and _FILE_ macros are valuable diagnostic tools. 
Suppose, for example, that you want a check facility that compares two 
expressions for equality and, if they are unequal, calls an error reporting 
function with the source filename and the line number of the check fail­
ure. 

#define CHECK( a, b ) \ 
if «a) != (b» \ 
fail( a, b, __ FILE __ , __ LINE __ ) 

void fail( a, b, p, line) 
int a, b, linej 
char *pj 
{ 

printf( "Check failed in file %s at line %d:\ 
received %d, expected %d\n", p, line, a, b )j 
} 

At various points in a program, you can check to make sure that a vari­
able x equals zero by including the following diagnostic: 

CHECK(x, O)j 

The _DATE_ and _TIME_ macros are useful for recording the date 
and time a file was last compiled. For instance: 

void print_version«) 
{ 

} 

printf( "This utility last compiled on %s at %s\n" , 
__ DATE __ , __ TlME __ ) j 

The _STDC_ macro, if it expands to 1. signifies that the compiler con­
forms to the ANSI Standard. If it expands to any other value. or if it is 
not defined, you should assume that the compiler does not conform to 
the ANSI standard. Section 10.2 illustrates a common use of this macro. 



www.manaraa.com

328 Chapter 10 

Box 10-8: ANSI Feature - String Producer 

One of the limitations of the preprocessor described in the K&R 
standard is that there is no way to expand macros within a string 
literal. For instance, suppose you make the definition, 

#define a 100 

and later in the program, make the following printf() call: 

printf( "attaboy" ); 

The preprocessor does not expand the printf() argument to: 

printf ( "100tt100boy" ); 

In most instances, this non-expansion of macro names within a 
string literal is exactly what you want. Occasionally, however, 
you want the macro expanded. For example: 

#define VERSION 5 
printf( "This is version VERSION.\n" ); 

In this case, you want VERSION to be expanded so that the 
printf() call outputs: 

This is version 5. 

In the K&R standard there is no way to make this happen. With 
an ANSI-conforming compiler, you can obtain this behavior by 
using two new features. The first is the automatic concatenation 
of adjacent string constants, described in Chapter 6. The other is 
the preprocessor token #, which forces the preprocessor to sur­
round the next replacement argument with double quotes. For 
example: 

#define str( s ) #s 

The statement, 

printf( str( This is a string) ); 

expands to: 

printf ( "This is a string" ); 

To print the version number in the example above, you could 
write: 

#define VERSION 5 
#define str( s ) #s 
printf( "This is version" str( VERSION) ".\n" ); 

(continues) 



www.manaraa.com

The Preprocessor 

Box 10-8 (continued): 
This expands to: 

printf( "This is version" "5" ".\n" ); 

After concatenation of string literals, this becomes: 

printf( "This is version 5.\n"); 

329 

You could achieve the same goal by including the quotes in the 
definition of VERSION: 

#define VERSION "5" 
printf( "This is version" VERSION ".\n" ); 

This method, however, has the drawback that you can use VER­
SION only as a string literal. You can't assign VERSION to an in­
teger variable as you can with the method that uses strO. 

Box 10-9: ANSI Feature - Token Pasting 
The ANSI Standard defines a new preprocessor operator· (##) 
that pastes two tokens. For example, 

#define FILENAME( extension) test. ## extension 

The sequence, 

FILENAME( bak 

expands to: 

test.bak 

Note that you cannot obtain this behavior without using the paste 
operator. For example, 

#define FILENAME( extension) test.extension 

does not work because macro arguments must be preceded by 
white space or a pound sign to be recognized. But if you include 
a space, 

#define FILENAME( extension) test. extension 

the space becomes part of the macro body, so the expression, 

FILENAME( bak ) 

expands to: 

test. bak 



www.manaraa.com

330 Chapter 10 

1 0.2 Conditional Compilation 
The preprocessor enables you to screen out portions of source code that 
you don't want compiled. This is done through a set of preprocessor di­
rectives that are similar to the if and else statements in the C language . 
The preprocessor versions are #if, #else, #elif, and #endif. The syntax 
for using these directives is shown in Figure 10-2. 

conditional 
expression 

conditional 
expression 

Figure 10-2. Syntax of Conditional Compilation Directives. 



www.manaraa.com

The Preprocessor 

For example: 

Uif x == 1 
Uundef x 
#define x 0 

#elif x == 2 
Uundef x 
#define x 3 

#else 
Udefine y 4 

#endif 

331 

The conditional expression in an #if or #elif directive must be a constant 
expression, so x must be a macro. If it expands to 1, it is redefined to 
expand to zero. If it expands to 2, it is redefined to expand to 3. Other­
wise, x remains unchanged, but a new macro named y is defined. This 
example illustrates a number of differences between the preprocessor 
conditional statements and the C language conditional statements: 

• The conditional expression in an #if or #elif statement need not 
be enclosed in parentheses. (Parentheses may optionally be in­
cluded.) 

• The #elif directive, which is not supported by K&R, is analogous 
to the C language else if construct. 

• Blocks of statements under the control of a conditional 
preprocessor directive are not enclosed in braces. Instead, they 
are bounded by an #elif. #else. or #endif statement. 

• Every #if block may contain any number of #elif blocks. but no 
more than one #else block. which should be the last one. 

• Every #if block must end with an #endif directive. 

In addition to these differences. there are other rules governing condi­
tional preprocessor directives that are not apparent from our example: 

• The conditional expression following an #if or #elif statement 
must be a constant expression. Normal arithmetic conversions 
take place. (According to the ANSI Standard. all constants in a 
conditional expression are converted to long int. In most previ­
ous versions of C. constants in conditional expressions obey the 
same type rules as other constants.) 

• Any macros in the conditional expression are expanded before 
the expression is evaluated. 



www.manaraa.com

332 Chapter 10 

• If a conditional expression contains a name that has not been de­
fined, it is replaced by the constant zero. For example, the se­
quence, 

Nundef x 
Nif x 

expands to: 

Nif 0 

(This is how undefined names are handled in the ANSI Stan­
dard. Some compilers, however, report an error if you use an 
undefined name.) 

• Conditional preprocessor directives may be nested with the same 
semantics as nested if statements. 

In our examples so far, the statements within the conditional blocks are 
themselves preprocessor statements, but this is not a restriction. They 
could just as easily be C language statements. In fact, conditional compi­
lation is particularly useful during the debugging stage of program devel­
opment since you can turn sections of code on or off by changing the 
value of a macro. The following snippet is from the C interpreter pro­
gram that we develop in Chapter 12: 

Nif DEBUG 
if (exp_debug) 
{ 

} 
#endif 

printf( "lhs - " ); 
print_value ( result ); 
printf( " rhs - " ); 
print_value ( &rvalue ); 
printf( "\n" ); 

If the macro DEBUG is a non-zero value, the if statement and print/O 
calls will be compiled. If DEBUG is zero, these statements will be ig­
nored as if they were a comment. If DEBUG is not defined, it is the 
same as if it were defined to expand to zero. 

Most compilers have a command line option that lets you define macros 
before compilation begins. Most C compilers that run under UNIX and 
MS-DOS, for example, contain a -D option for defining macros. To re­
ceive debug information, you would define the macro DEBUG to be 
some non-zero value: 

cc -DDEBUG-l test 



www.manaraa.com

The Preprocessor 333 

Note that the #if and #endif directives control whether the enclosed C 
statements are compiled, not necessarily whether they are executed. In 
the above example, the printfO calls are only executed if the exp_debug 
variable has a non-zero value. This double-layer approach enables you 
to include the diagnostic statements in the executable program, but still 
decide each time you run the program whether you want them executed. 
If for the final version, you need to reduce the size of the executable pro­
gram, you can compile it with DEBUG set to zero. 

Another common use of the conditional compilation mechanism is to 
choose between the old function declaration syntax and the new ANSI 
prototyping syntax: 

#if ( __ STDC __ == 1) 
extern int foo( char a, float b ); 
extern *char goo( char *string ); 

#else 
extern int foo(); 
extern *char goo(); 

#endif 

If the compiler conforms to the ANSI standard L STDC __ equals 1), we 
use the prototyping syntax to declare the types of each argument. Other­
wise, we use the old function declaration syntax. 

10.2.1 Testing Macro Existence 
The #if and #elif directives enable you to conditionally compile code 
based on the value of an arithmetic expression. You can also specify 
conditional compilation based on the existence or non-existence of a 
macro using #ifdef, #ifndef, and #endif. For example: 

#ifdef TEST 
printf ( I1This is a test. \n l1 ); 

#else 
printf( I1This is not a test.\n l1 ); 

#endif 

If the macro TEST is defined, the first printfO call will be compiled. If 
TEST is not a defined macro, the second printfO call is compiled. Note 
that it doesn't matter what TEST expands to, only whether it exists or 
not. As with #if and #elif, an #ifdef and #ifndef block must be termi­
nated by an #endif statement. 



www.manaraa.com

334 Chapter 10 

Another way to write the previous example is to use the preprocessor de­
fined operator (an ANSI extension): 

#if defined TEST 

or 

#if defined( TEST ) 

The parentheses around the macro name are optional. By definition, 

#if defined macro_name 

is equivalent to: 

#ifdef macro_name 

And the directive, 

#if !defined macro_name 

is equivalent to: 

#ifndef macro_name 

In most instances, you can use #if instead of #ifdef and #ifndef, since 
the macro name expands to zero if it is not defined. The one exception 
where you need to use #ifdef or #ifndef is when the macro is defined to 
zero. For example, you may want to define the macro FALSE to expand 
to zero. If you use an #if directive to test whether FALSE is defined, 
FALSE will be redefined even if it is already defined to expand to zero. 
More important, it won't be redefined if it is defined to something other 
than zero. 

#if !FALSE 
# define FALSE 0 
#endif 

You can avoid both of these problems by using #ifndef. 

#ifndef FALSE 
# define FALSE 0 
#elif FALSE 
# undef FALSE 
# define FALSE 0 
#endif 



www.manaraa.com

The Preprocessor 335 

1 0.3 Include Facility 
You have already been introduced to the #include directive as a means 
for inserting source code into a file. This section describes #include in 
more detail. 

The #include command has two forms: 

# inc 1 ude <filename> 

or 

#include "filename" 

If the filename is surrounded by angle brackets, the preprocessor looks in 
a list of implementation-defined places for the file. (In UNIX systems, 
standard include files are often located in the directory lusrlinclude.) If 
the file name is surrounded by double quotes, the preprocessor looks for 
the file according to the file specification rules of the operating system. If 
the preprocessor can't find the file there, it searches for the file as if it 
had been enclosed in angle brackets. 

The #include command enables you to create common definition files, 
called header files, to be shared by several source files. Header files tra­
ditionally have a .h extension and contain data structure definitions, 
macro definitions, and any global data necessary for modules to commu­
nicate with each other. You should use header files to place common in­
formation in one place instead of duplicating it in each source module. 
This greatly simplifies the initial programming as well as the subsequent 
maintenance and modification. It also ensures that programmers working 
on different parts of a project do not use the same name in conflicting 
ways. 

The C extern declaration is tailored to this sharing of a common defini­
tion file since you can redeclare the same extern variable any number of 
times, so long as the data type remains the same. Note, however, that 
most compilers do not allow you to initialize a global variable more than 
once. As a result, extern declarations that appear in an include file 
should not contain an initializer. Instead, you should choose a single file 
in which to enter the initialization. It is a good idea to enter a comment 
in the header file stating where the global variable is initialized and what 
the initial value is. For example, the header file might contain the decla­
ration: 

/* Initialized to 1 in start.c */ 
extern int page_num; 

In the source file start. c, you would write: 

int page_num = 1; 



www.manaraa.com

336 Chapter 10 

Operating systems such as UNIX supply many header files that describe 
structures internal to the operating system. The C runtime library also in­
cludes a number of header files that must be included in order to invoke 
associated functions. See Appendix A for more information about run­
time library header files. 

1 0.4 Line Control 
The ANSI Standard defines a preprocessor directive called #line that al­
lows you to change the compiler's knowledge of the current line number 
of the source file and the name of the source file. 

Figure 10-3. Syntax of the #line Directive. 

The syntax for #line is shown in Figure 10-3. The line number that you 
enter represents the line number of the next line in the source file. Most 
compilers use this number when they report an error and source-level 
debuggers make use of line numbers. The following example illustrates 
the behavior of #line. 

/* Example of the #line preprocessor directive 
*/ 

main () 
{ 

printf( "Current line: %d\nFilename: %s\n\n" , 
_LINE_, _FILE_ ); 

#line 100 
printf ( "Current line: %d\nFilename: %s\n\n", 

_LINE_, _FILE_ ); 
#line 200 "new_name" 

} 

printf( "Current line : %d\nFilename: %s\n\n" , 
_LINE_, _FILE_ ); 

exit (0) ; 



www.manaraa.com

The Preprocessor 337 

Assuming that the source file for this program is called line_example.c, 
execution produces: 

Current line: 7 
Filename: line_example.e 

Current line: 101 
Filename: line_example.e 

Current line: 201 
Filename: new_name 

The preprocessor evaluates _LINE_ before deleting comments. How­
ever, if an #include directive appears before an occurrence of 
_LINE_, the preprocessor inserts the include file before computing the 
value of _LINE_ 

The #line feature is particularly useful for programs that produce C 
source text. For instance, yacc (which stands for Yet Another Compiler 
Compiler) is a UNIX utility that facilitates building compilers. yacc reads 
files written in the yacc language and produces a file written in the C lan­
guage, which can then be compiled by a C compiler. A problem arises, 
however, if the C compiler encounters an error in the yacc-produced C 
file. You want to know which line in the original yacc file is causing the 
error, but the C compiler will report the error-producing line in the C 
text file. To solve this problem, yacc writes #line directives in the C 
source file so that the compiler is fooled into reporting errors based on 
the yacc line numbers rather than the C line numbers. 

Box 10-10: ANSI Feature - The #error Directive 

The ANSI #error directive enables you to report errors during the 
preprocessing stage of compilation. Whatever text follow the #er­
ror command will be sent to the standard error device (usually 
your terminal). Typically, it is used to check for illegal conditional 
compilation values. For example: 

#if INTSIZE < 16 
# error INTSIZE too small 
#endif 

If you attempt to compile a file with, 

ee -DINTSIZE=8 test.e 

you will receive the error message: 

INTSIZE too small 



www.manaraa.com

338 Chapter 10 

Box 10-11: ANSI Feature - The #pragma Directive 

The ANSI #pragma directive performs implementation-specific 
tasks. Every compiler is free to support special names that have 
implementation-defined behavior when preceded by #pragma. 
For instance, a compiler might support the names NO_SIDE_EF­
FECTS and END_NO_SIDE_EFFECTS, which inform the com­
piler whether it needs to worry about side effects for a certain 
block of statements. This information can help the compiler gen­
erate better-optimized machine code. In the following snippet, for 
instance, the compiler is free to assign 2 to *p before the call to 
fn () because the programmer has guaranteed that fn () will not pro­
duce side effects that might affect *p: 

#pragma NO_SIDE_EFFECTS 
a = fn( x, 2 ); 
*p = 2; 

#pragma END_NO_SIDE_EFFECTS 

Check the documentation for your compiler to see if it supports 
any special #pragma directives. 



www.manaraa.com

The Preprocessor 

Exercises 
1) Give the translation of the following macros: 

a) #define BUFFSIZE 1024 
int buf[BUFFSIZE+1]; 

b) #define a(b) b+1 
a(l) + 1 

c) #define a (b) b+1 
a(l) + 1 

d) #define cos (x) *cos(x) 
cos(x) + cos(cos(y)+l) 

e) #define min(x,y) «x»=(y)?x:y) 
min(l,min(a,b» 

f) #define DO_BIG_BUFFERS 
#define IO_FLAGS Ox5C 
#define IO_NO_ODD_BOUND 4 
#define DO_BIG_BUFFERS 
#if defined( BIG_BUFFERS ) && (IO_FLAGS & \ 

IO_NO_ODD_BOUND) 
input_stream = big_buf_init(); 
stream_align ( input_stream ); 

#else 
input_stream = small_buff_init(); 

#endif 

339 



www.manaraa.com

Chapter 11 

Input and Output 

In good writing, words become one with things. 
Emerson, Journals 

File I/O is one of the trickiest aspects of any programming language 
because it is integrated so closely with the operating system. Operating 
systems vary greatly in the way they allow access to data in files and 
devices. This variation makes it extremely difficult to design I/O 
capabilities that are portable from one implementation of a programming 
language to another. 

The C language performs I/O through a large set of runtime routines. 
Many of these functions were first described in the K&R standard. 
Others are derived from the UNIX I/O library. Historically, there has 
always been some overlap between these two libraries, although the "C 
library" deals mostly with buffered I/O while the UNIX library performs 
unbuffered I/O. 

The ANSI Committee blended these two libraries, preserving some 
functions, deleting some functions, and modifying others. The most 
significant change is the elimination of unbuffered I/O functions. In the 
ANSI library, all I/O functions are buffered, although you have the 
capability to change the buffer size. In addition, the ANSI I/O functions 
make a distinction between accessing files in binary mode and accessing 
them in text mode. In UNIX environments, this distinction is moot 
because the UNIX operating system treats binary and text files the same. 
In some other operating systems, the distinction is extremely important. 



www.manaraa.com

Input and Output 341 

The Standard C Library contains nearly forty functions that perform 110 
operations. They can be divided into several groups, as shown in Tables 
11-3 through 11-5. Appendix A describes each function detail. The 
remainder of this chapter provides more general information. We use 
the ANSI Standard as the basis of our discussion. 

11.1 Streams 
C makes no distinction between devices such as a terminal or tape drive 
and logical files located on a disk. In all cases, 110 is performed through 
streams that are associated with the files or devices. A stream consists of 
an ordered series of bytes. You can think of it as a one-dimensional 
array of characters, as shown in Figure 11-1. Reading and writing to a 
file or device involves reading data from the stream or writing data onto 
the stream. 

C PROGRAM 

FILE 

Figure 11-1. Streams. C Programs access data on files through 
one-dimensional arrays of characters called streams. 

To perform 110 operations, you must associate a stream with a file or 
device . You do this by declaring a pointer to a structure type called 
FILE. The FILE structure, which is defined in the stdio.h header file, 
contains several fields to hold such information as the file's name, its 
access mode, and a pointer to the next character in the stream. These 
fields are assigned values when you open the stream and access it, but 
they are implementation dependent, so they vary from one system to 
another. 



www.manaraa.com

342 Chapter 11 

The FILE structures provide the operating system with bookkeeping 
information, but your only means of access to the stream is the pointer to 
the FILE structure (called a file pointer). The file pointer, which you 
must declare in your program, holds the stream identifier returned by the 
fopenO function. You use the file pointer to read from, write to, or close 
the stream. A program may have more than one stream open 
simultaneously, although each implementation imposes a limit on the 
number of concurrent streams. 

One of the fields in each FILE structure is a file position indicator that 
points to the byte where the next character will be read from or written 
to. As you read from and write to the file, the operating system adjusts 
the file position indicator to point to the next byte. Although you can't 
directly access the file position indicator (at least not in a portable 
fashion), you can fetch and change its value through library functions, 
thus enabling you to access a stream in non-serial order. 

Do not confuse the file pointer with the file position indicator. The file 
pointer identifies an open stream connected to a file or device. The file 
position indicator refers to a specific byte position within a stream. 

11.1.1 Standard Streams 
There are three streams that are automatically opened for every program. 
Their names are stdin, stdout, and stderr. Usually, these streams point 
to your terminal, but many operating sytems permit you to redirect them. 
For example, you might want error messages written to a file instead of 
the terminal. 

The 110 functions already introduced, printfO and scanf() for example, 
use these default streams. printfO writes to stdout, and scanf() reads 
from stdin. You could use these functions to perform 110 to files by 
making stdin and stdout point to files (with the freopen () function). An 
easier method, however, is to use the equivalent functions, fprintf() and 
fscanfO, which enable you to specify a particular stream. 

11.1.2 Text and Binary Formats 
Data can be accessed in one of two formats: text or binary. 
(Implementations may support additional formats, but they are not 
required by the ANSI Standard to do so.) A text stream consists of a 
series of lines, where each line is terminated by a newline character. 
However, operating systems may have other ways for storing lines on 
disks and tapes, so each line in a text file does not necessarily end in a 
newline character. Many IBM systems, for instance, keep track of text 
lines through an index of pointers to the beginnings of each line. In this 



www.manaraa.com

Input and Output 343 

scheme, the files stored on disk or tape may not contain newline 
characters even though they are logically composed of lines. When these 
lines are read into memory in text mode, however, the runtime functions 
automatically insert newlines into the text stream. Likewise, when lines 
are written from a text stream to a mass storage device, the I/O functions 
may replace newlines in the stream with implementation-defined 
characters that get written to the I/O device. In this way, C text streams 
have a consistent appearance from one environment to another, even 
though the format of the data on the mass storage devices may vary. 

Despite these rules, which promote portability to some extent, you should 
be extremely careful when performing textual I/O. Programs that work 
on one system may not work exactly the same way on another. In 
particular, the rules described above only hold true for printable 
characters (including tabs, form feeds, and newlines.) If control 
characters appear in a text stream, they are interpreted in an 
implementation-defined manner. 

In binary format, the compiler performs no interpretation of bytes. It 
simply reads and writes bits exactly as they appear. Binary streams are 
used primarily for non-textual data, where there is no line structure and 
it is important to preserve the exact contents of the file. If you are more 
interested in preserving the line structure of a file, you should use a text 
stream. The three standard streams, for example, are all opened in text 
mode. 

As we mentioned earlier, in UNIX environments the distinction between 
text and binary modes is moot since UNIX treats all data as binary data. 
However, even if you are programming in a UNIX environment, you 
should be thinking about potential difficulties in porting your program to 
other systems. 

11.2 Buffering 
Compared to memory, secondary storage devices such as disk drives and 
tape drives are extremely slow. For most programs that involve I/O, the 
time taken to access these devices overshadows the time the CPU takes 
to perform operations. It is extremely important, therefore, to reduce 
the number of physical read and write operations as much as possible. 
Buffering is the simplest way to do this. 

A buffer is an area where data is temporarily stored before being sent to 
its ultimate destination. Buffering provides more efficient data transfer 
because it enables the operating system to minimize accesses to I/O 
devices. 

All operating systems use buffers to read from and write to I/O devices. 
That is, the operating system only accesses I/O devices in fixed-size 



www.manaraa.com

344 Chapter 11 

chunks, called blocks. Typically, a block is 512 or 1024 bytes. This 
means that ev~n if you want to read only one character from a file, the 
operating system reads the entire block on which the character is located. 
For a single read operation, this isn't very efficient, but suppose you want 
to read 1000 characters from a file. If I/O were unbuffered, the system 
would perform 1000 disk seek and read operations. With buffered I/O, 
on the other hand, the system reads an entire block into memory and 
then fetches each character from memory when necessary. This saves 
999 I/O operations. 

The C runtime library contains an additional layer of buffering, which 
comes in two forms: line-buffering and block buffering. 

In line buffering, the system stores characters until a newline character is 
encountered, or until the buffer is filled, and then sends the entire line to 
the operating system to be processed. This is what happens, for example, 
when you read data from the terminal. The data is saved in a buffer until 
you enter a newline character. At that point, the entire line is sent to 
the program. 

In block-buffering, the system stores characters until a block is filled, 
and then passes the entire block to the operating system. The size of a 
block is defined by the operating system, but is typically 512 or 1024 
bytes. By default, all I/O streams that point to a file are block buffered. 
Streams that point to your terminal (stdin and stdout), are either line 
buffered or unbuffered, depending on the implementation. 

The C Library standard I/O package includes a buffer manager that 
keeps buffers in memory as long as possible. So if you access the same 
portion of a stream more than once, there is a good chance that the 
system can avoid accessing the I/O device multiple times. Note, 
however, that this can create problems if the file is being shared by more 
than one process. For inter-process synchronization, you need to write 
your own assembly language functions, or use system functions supplied 
with the operating system. 

In both line buffering and block buffering, you can explicitly direct the 
system to flush the buffer at any time (with the fflushO function), 
sending whatever data is in the buffer to its destination. 

Although line buffering and block buffering are more efficient than 
processing each character individually, they are unsatisfactory if you want 
each character to be processed as soon as it is input or output. For 
example, you may want to process characters as they are typed rather 
than waiting for a newline to be entered. C allows you to tune the 
buffering mechanism by changing the default size of the buffer. In most 
systems, you can set the size to zero to turn buffering off entirely. 
Section 11.8 describes unbuffered I/O in greater detail. 



www.manaraa.com

Input and Output 345 

11.3 The <stdio.h> Header File 
To use any of the I/O functions, you must include the stdio.h header file. 
This file contains: 

• Prototype declarations for all the I/O functions. 

• Declaration of the FILE structure. 

• Several useful macro constants, including stdin, stdout, and 
stderr. 

Another important macro is EOF, which is the value returned by many 
functions when the system reaches the end-of-file marker. Historically, 
stdio.h is also where NULL, the name for a null pointer, is defined. The 
ANSI Committee, however, moved the definition of NULL to a new 
header file called stddef.h. To use NULL, therefore, you must either 
include stddef.h or define NULL yourself: 

#ifndef NULL 
#define NULL (void *) 0 

#endif 

11.4 Error Handling 
Each I/O function returns a special value if an error occurs. The error 
value, however, varies from one function to another. Some functions 
return zero for an error, others return a non-zero value, and some return 
EOF. Read the function description in Appendix A to see what value it 
returns for an error. 

There are also two members of the FILE structure that record whether 
an error or end-of-file has occurred for each open stream. End-of-file 
conditions are represented differently on different systems. Some 
systems have a special character that denotes the end of a file, while 
others use some method of counting characters to determine when the 
end of a file has been reached. In either case, an attempt to read data 
past the end-of-file marker will cause an end-of-file condition. A 
stream's end-of-file and error flags can be checked via the feof() and 
ferror() functions, respectively. In a few instances, an I/O function 
returns the same value for an end-of-file condition as it does for an error 
condition. In these cases, you need to check one of the flags to see 
which event actually occurred. 

The following function checks the error and end-of-file flags for a 
specified stream and returns one of four values based on the results. The 
clearerr() function sets both flags equal to zero. You must explictly reset 
the flags with clearerr()-they are not automatically reset when you read 



www.manaraa.com

346 Chapter 11 

them, nor are they automatically reset to zero by the next I/O call. They 
are initialized to zero when the stream is opened, but the only way to 
reset them to zero is with clearerr(). 

/* If neither flag is set, stat will equal zero. 
* If error is set, but not eof, stat 
* If eof is set, but not error, stat 
* If both flags are set, stat equals 
*/ 

#include <stdio.h> 
#define EOF_FLAG 1 
#define ERR_FLAG 2 

char stream_state fp 
FILE *fp; 
{ 

} 

char stat Q. , 

if (ferror( fp » 
stat 1= ERR_FLAG; 

if (feof( fp » 
stat 1= EOF_FLAG; 

clearerr () ; 
return stat; 

11.4.1 The errno Variable 

equals 1. 
equals 2. 
3. 

In addition to the end-of-file and error flags, there is a global variable 
called errno that is used by a few of the I/O functions to record errors. A 
UNIX hand-me-down, errno is an integer variable declared in the 
stddef.h header file. The errno variable is primarily used for math 
functions; very few of the I/O functions make use of errno. For more 
information about errno, see Appendix A. 



www.manaraa.com

Input and Output 347 

11.5 Opening and Closing a File 
Before you can read from or write to a file, you must open it with the 
jopen 0 function. jopen 0 takes two arguments-the first is the file name 
and the second is the access mode. There are two sets of access 
modes-one for text streams and one for binary streams. The text stream 
modes are shown in Table 11-1. The binary modes are exactly the 
same, except that they have a b appended to the mode name. To open a 
binary file with read access, for example, you would use "rb". 

"r" 

"w" 

"a" 

"r+" 

"w+" 

"a+" 

Open an existing text file for reading. 
Reading occurs at the beginning of the file. 

Create a new text file for writing. If the file 
already exists, it will be truncated to zero 
length. The file position indicator is in­
itially set to the beginning of the file. 

Open an existing text file in append mode. 
You can write only at the end-of-file posi­
tion. Even if you explicitly move the file 
position indicator, writing still occurs at the 
end-of-file. 

Open an existing text file for reading and 
writing. The file position indicator is in­
itially set to the beginning of the file. 

Create a new text file for reading and writ­
ing. If the file already exists, it will be 
truncated to zero length. 

Open an existing file or create a new one in 
append mode. You can read data any­
where in the file, but you can only write 
data at the end-of-file marker. 

Table 11-1. fopenO Text Modes. 

Table 11-2 summarizes the properties of the jopenO modes. 



www.manaraa.com

348 Chapter 11 

r w a r+ w+ a+ 

File must exist before open * * 
Old file truncated to zero length * * 
Stream can be read * * * * 
Stream can be written * * * * * 
Stream can be written only at end 

* * 
Table 11-2. File and Stream Properties of fopen 0 Modes. 

fopenO returns a file pointer that you can use to access the file later in 
the program. The following function opens a text file called test with 
read access. 

#include <stddef.h> 
#include <stdio.h> 

FILE *open_test(); /* Returns a pointer to a FILE */ 
/* struct */ { 

} 

FILE *fp; 

fp = fopen( "test", "r" ); 
if (fp == NULL) 

fprintf( stderr, "Error opening file test\n" ); 
return fp; 

Note how the file pointer fp is declared as a pointer to FILE. The 
fopenO function returns a null pointer (NULL) if an error occurs. If 
successful, fopenO returns a non-zero file pointer. The fprintfO 
function is exactly like printfO, except that it takes an extra argument 
indicating which stream the output should be sent to. In this case, we 
send the message to the standard I/O stream stderr. By default, this 
stream usually points to your terminal. 

The open_testO function is written somewhat more verbosely than is 
usual. Typically, the error test is combined with the file pointer 
assignment: 

if «fp = fopen( "test", "r" » == NULL) 
fprintf( stderr, "Error opening file test\n" ); 



www.manaraa.com

Input and Output 

Box 11-1: Bug Alert - Opening a File 
In the statement, 

if «fp = fopen( "test". "r" » == NULL) 

349 

fprintf( stderr. "Error opening file test\n" ); 

the parentheses around, 

fp = fopen( "test". "r" ) 

are necessary because == has higher precedence than =. Without 
the parentheses. Jp gets assigned zero or one, depending on 
whether the result of JopenO is a null pointer or a valid pointer. 
This is a common programming mistake. 

The open_testO function is a little too specific to be useful since it can 
only open one file. called test. and only with read-only access. A more 
useful function. shown below. can open any file with any mode. 

#include <stddef.h> 
#include <stdio.h> 

FILE *open_file( file_name, access_mode 
char *file_name, *access_mode; 
{ 

FILE *fp; 
if «fp = fopen( file_name, access_mode » == NULL) 

fprintf( stderr, "Error opening file %s with\ 
access mode %s\n" , file_name, access_mode ); 

return fp; 

Our openJile 0 function is essentially the same as Jopen 0, except that it 
prints an error message if the file cannot be opened. 

To open test from mainO. you could write: 

#include <stddef.h> 
#include <stdio.h> 

main () 
{ 

} 

extern FILE *open_file(); 

if «open_file("test", "r"» 
exit (1) ; 

NULL) 



www.manaraa.com

350 Chapter 11 

Note that the header files are included in both routines. You can include 
them in any number of different source files without causing conflicts. 

11.5.1 Closing a File 
To close a file, you need to use the fcloseO function: 

fclose ( fp ); 

Closing a file frees up the FILE structure that fp points to so that the 
operating system can use the structure for a different file. It also flushes 
any buffers associated with the stream. Most operating systems have a 
limit on the number of streams that can be open at once, so it's a good 
idea to close files when you're done with them. In any event, all open 
streams are automatically closed when the program terminates normally. 
Most operating systems will close open files even when a program aborts 
abnormally, but you can't depend on this behavior. Moreover, 
networked systems tend to have a high overhead for closing streams that 
you have explicitly opened if you neglect to close them yourself. 

11.6 Reading and Writing Data 
Once you have opened a file, you use the file pointer to perform read 
and write operations. There are three degrees of I/O granularity. That 
is, you can perform I/O operations on three different sizes of objects. 
The three degrees of granularity are as follows: 

• One character at a time 

• One line at a time 

• One block at a time 

Each of these methods has some pros and cons. In the following 
sections, we show three ways to write a simple function that copies the 
contents of one file to another. Each uses a different degree of 
granularity. 

One rule that applies to all levels of I/O is that you cannot read from a 
stream and then write to it without an intervening call to fseekO, 
rewind 0, or ffiush O. The same rule holds for switching from write mode 
to read mode. These three functions are the only I/O functions that flush 
the buffers. 



www.manaraa.com

Input and Output 351 

11.6.1 One Character at a Time 
There are four functions that read and write one character to a stream: 

geteO A macro that reads one character from a 
stream. 

fgeteO Same as geteO, but implemented as a 
function. 

puteO A macro that writes one character to a 
stream. 

fputeO Same as puteO, but implemented as a 
function. 

Note that geteO andputeO are usually implemented as macros whereas 
fgeteO and fputeO are guaranteed to be functions. Because they are 
implemented as macros, puteO and geteO usually run much faster. In 
fact, on our machine, they are almost twice as fast asfgeteO andfputeO. 
Because they are macros, however, they are susceptible to side-effect 
problems (see Box 10-6). For example, the following is a dangerous call 
that may not work as expected: 

putc( 'x', fp[j++] ); 

If an argument contains side-effect operators, you should use fgeteO or 
fputeO, which are guaranteed to be implemented as functions. Note that 
geteO and puteO are the only library calls for which this caveat applies. 
For the rest of the library, the ANSI Standard states that if a function is 
implemented as a macro, its argument(s) may appear only once in the 
macro body. This restriction removes side-effect problems. 

The following example uses geteO andputeO to copy one file to another. 



www.manaraa.com

352 

#include <stddef.h> 
#include <stdio.h> 
#define FAIL 0 
#define SUCCESS 1 

int copyfile( infile, outfile 
char *infile, *outfile; 
{ 

} 

FILE *fpl, *fp2; 

if «fpl = fopen( infile, "rb" » == NULL) 
return FAIL; 

if «fp2=fopen( outfile, "wb" » == NULL) 
{ 

} 

fclose( fpl ); 
return FAIL; 

while (!feof( fpl » 
putC( getc( fpl ), fp2 ); 

fclose( fpl ); 
fclose( fp2 ); 
return SUCCESS; 

Chapter 11 

We open both files in binary mode because we are reading each 
individual character, and are not concerned with the file's line structure. 
This function will work for all files, regardless of the type of data stored 
in the file. 

The getcO function gets the next character from the specified stream and 
then moves the file position indicator one position. Successive calls to 
getcO read each character in a stream. When the end-of-file is 
encountered, the !eo!O function returns a non-zero value. Note that we 
cannot use the return value of getcO to test for an end-of-file because 
the file is opened in binary mode. For example, if we write 

int c; 
while «c = getc( fpl » != EOF) 

the loop will exit whenever the character read has the same value as 
EOF. This mayor may not be a true end-of-file condition. The!eo!O 
function, on the other hand, is unambiguous. 



www.manaraa.com

Input and Output 353 

11.6.2 One Line at a Time 

Another way to write this function is to read and write lines instead of 
characters. There are two line-oriented I/O functions-fgetsO and 
fputsO. The prototype for fgetsO is: 

char *fgets( char *s, int n, FILE stream ); 

The three arguments have the following meanings: 

s 

n 

stream 

A pointer to the first element of an array to 
which characters are written. 

An integer representing the maximum 
number of characters to read. 

The stream from which to read. 

fgetsO reads characters until it reaches a newline, an end-of-file, or the 
maximum number of characters specified. fgets() automatically inserts a 
null character after the last character written to the array. This is why, in 
the following copyfile 0 function, we specify the maximum to be one less 
than the array size. fgetsO returns NULL when it reaches the end-of-file. 
Otherwise, it returns the first argument. The fputsO function writes the 
array identified by the first argument to the stream identified by the 
second argument. 

One point worth mentioning is the difference between fgetsO and getsO 
(the function that reads lines from stdin.) Both functions append a null 
character after the last character written. However, getsO does not write 
the terminating newline character to the input array. fgetsO does 
include the terminating newline character. Also, fgetsO allows you to 
specify a maximum number of characters to read, whereas getsO reads 
characters indefinitely until it encounters a newline or end-of-file. 

The following function illustrates how you might implement copyfile using 
the line-oriented functions. Note that we open the files in text mode 
because we want to access the data line by line. If we open the files in 
binary mode, the fgetsO function might not work correctly because it 
would look explicitly for a newline character. The file itself mayor may 
not include newline characters. If the file was written in text mode, it 
will contain newline characters only if that is how the operating system 
denotes new lines. In text mode, fgetsO uses the implementation's 
definition of a newline. 



www.manaraa.com

354 

#include <stddef.h> 
#include <stdio.h> 

#define FAIL 0 
#define SUCCESS 1 
#define LINESIZE 100 

int copyfile( infile, outfile 
char *infile, *outfile; 
{ 

FILE *fp1, *fp2; 
char line [LINESIZE] ; 

if «fp1 = fopen( infile, "r" » == NULL) 
return FAIL; 

if «fp2 = fopen( outfile, "w" » == NULL) 
{ 

} 

fclose ( fp1 ); 
return FAIL; 

Chapter 11 

while (fgets( line, LINESIZE-1, fp1 ) != NULL) 

} 

fputs( line, fp2 ); 
fclose( fp1 ); 
fclose( fp2 ); 
return SUCCESS; 

You might think that the eopyfileO version that reads and writes lines 
would be faster than the version that reads and writes characters because 
it requires fewer function calls. Actually, though, the version using geteO 
and puteO is significantly faster. This is because most compilers 
implementfgetsO andfputsO usingfputeO andfgeteO. Since these are 
functions rather than macros, they tend to run more slowly. 

11.6.3 One Block at a Time 
In addition to character and line granularity, you can also access data in 
lumps called blocks. You can think of a block as an array. When you 
read or write a block, you need to specify the number of elements in the 
block and the size of each element. The two block I/O functions are 
fread 0 and fwrite O. The prototype for fread 0 is 

size_t fread( void *ptr, size_t size, size_t nmemb, 
FILE *stream ); 

where size_t is an integral type defined in stdio.h. 



www.manaraa.com

Input and Output 355 

The arguments represent the following data: 

ptr 

size 

nmenb 

stream 

A pointer to an array in which to store the data. 

The size of each element in the array. 

The number of elements to read. 

The file pointer. 

fread 0 returns the number of elements actually read. This should be the 
same as the third argument unless an error occurs or an end-of-file 
condition is encountered. 

The fwrite 0 function is the mirror-image of fread 0 . It takes the same 
arguments, but instead of reading elements from the stream to the array, 
it writes elements from the array to the stream. 

The following function shows how you might implement copyfile 0 using 
the block I/O functions. Note that we test for an end-of-file condition 
by comparing the actual number of elements read (the value returned 
fromfreadO) with the number specified in the argument list. If they are 
different, it means that either an end-of-file or an error condition 
occurred. We use the ferrorO function to find out which of the two 
possible events happened. If an error occurred, we print an error 
message and return an error code. Otherwise we return a success code. 
For the final fwriteO function we use the value of numJead as the 
number of elements to write, since it is less than BLOCKSIZE. 

Note that we took extra care to writt: the function so that it would be easy 
to modify. If we want to change the size of each element in the array, we 
need ony change the typedef statement at the top of the function. If we 
want to change the number of elements read, we need only redefine 
BLOCKSIZE. 



www.manaraa.com

356 Chapter 11 

#include <stddef.h> 
#include <stdio.h> 
#define FAIL 0 
#define SUCCESS 1 
#define BLOCKSIZE 512 
typedef char DATA; 

int copyfile( infile, outfile 
char *infile, *outfile; 
{ 

} 

FILE *fp1,*fp2; 
DATA block[BLOCKSIZE]; 
int num_read; 

if (tfp1 = fopen( infile, "rb" » == NULL) 
{ 

} 

printf( "Error opening file %s for input.\n" , 
infile ); 

return FAIL; 

if «fp2 = fopen( outfile, "wb" » == NULL) 
{ 

} 

printf( "Error opening file %s for output.\n", 
outfile ); 

fclose( fp1 ); 
return FAIL; 

while «num_read = fread( block, sizeof(DATA) , 
BLOCKSIZE, fp1 » == BLOCKSIZE) 

fwrite( block, sizeof(DATA) , num_read, fp2 ); 

fwrite( block, sizeof(DATA) , num_read, fp2 ); 
fclose( fp1 ); 
fclose( fp2 ); 

if (ferror( fp1 » 
{ 

printf( "Error reading file %s\n", infile ); 
return FAIL; 

} 
return SUCCESS; 



www.manaraa.com

Input and Output 357 

LikefputsO andfgetsO. the block I/O functions are usually implemented 
using fputeO and fgeteO functions. so they are not as efficient as the 
macros puteO and geteO. Note also that these block sizes are 
independent of the blocks used for buffering. The buffer size. for 
instance. might be 1024 bytes. If the block size specified in a read 
operation is only 512 bytes. the operating system will still fetch 1024 bytes 
from the disk and store them in memory. Only the first 512 bytes. 
however. will be made available to the freadO function. On the next 
freadO call. the operating system will fetch the remaining 512 bytes from 
memory rather than performing another disk access. The block sizes in 
freadO and fwriteO functions, therefore. do not affect the number of 
device I/O operations performed. 

11.7 Selecting an 1/0 Method 
As we have shown with the different versions of eopyfile 0, there are 
usually multiple ways to perform an I/O task. Choosing the best method 
is a matter of weighing pros and cons, paying special attention to 
simplicity, efficiency, and portability. 

From an efficency standpoint. the macros puteO and geteO are usually 
fastest. However, most operating systems have a means for performing 
very fast block I/O operations that can be even faster than puteO and 
geteO. These capabilities, however, are often not available through the 
C runtime library. You may need to write assembly code or call operating 
system services. UNIX systems, for example, provide routines called 
readO and writeO, which perform efficient block I/O transfers. If you 
think you may want to use system block I/O operations in the future, it is 
probably a good idea to write the original C routines using fread 0 and 
fwriteO since it will be easier to adapt these routines if they are already 
block oriented. 

Though efficiency is important. particularly with regards to I/O. it is not 
the only consideration. Sometimes the choice of an I/O method boils 
down to a question of simplicity. For example, fgetsO and fputsO are 
relatively slow functions, but it may be worth sacrificing some speed if you 
need to process entire lines. 



www.manaraa.com

358 Chapter 11 

Consider a function that counts the number of lines in a file. Using 
fgetsO and fputsO, the function can be written very simply: 

#include <stdio.h> 
#include <stddef.h> 
#define MAX_LINE_SIZE 120 

int lines_in_file( fp 
FILE *fp; 
{ 

} 

char buf[MAX_LINE_SIZE]; 
int line_num = 0; 

rewind(fp); /* Moves the file position indicator 
* to the beginning of the file. 
*/ 

while (fgets( fp, MAX_LINE_SIZE, buf ) != NULL) 
line_num++; 

return line_num; 

You could also write this function using character or block 110, but the 
function would be more complex. If execution speed is not important, 
therefore, the version above is the best. 

The last, but certainly not the least, consideration in choosing an 110 
method is portability. In terms of deciding between character, line, or 
block 110, portability doesn't really play a role. Portability is a major 
concern, however, in choosing between text mode and binary mode. If 
the file contains textual data, such as source code files and documents, 
you should open it in text mode and access it line by line. This will help 
you avoid many pitfalls if you port the program to a different machine. 
On the other hand, if the data is numeric and does not have a clear line 
structure, it is best to open it in binary mode and access it either 
character by character or block by block. 



www.manaraa.com

Input and Output 359 

11.8 Unbuffered 110 
Although the C runtime library provides the means to change the buffer 
size, you should use the capability with care. In most cases, the compiler 
developers have chosen a default buffer size that is optimal for the 
operating system under which the program will be run. If you change it, 
you may experience a loss of I/O speed. 

The one time when you need to tamper with the buffer size is when you 
want to turn off buffering altogether. Typically, this occasion arises when 
you want user input to be processed immediately. Normally, the stdin 
stream is line-buffered, requiring the user to enter a newline character 
before the input is sent to the program. For many interactive 
applications, this is unsatisfactory. 

Consider, for example, a text editor program. The user may type 
characters as part of the text or enter commands. For instance, the user 
could press an up-arrow key to move the cursor to another line. The I/O 
functions must be capable of processing each character as it is input, 
without waiting for a terminating newline character. 

To turn buffering off, you can use either the setbuf() function or the 
setvbuf() function. The setbuf() function takes two arguments: the first 
is a file pointer, and the second is a pointer to a character array which is 
to serve as the new buffer. If the array pointer is a null pointer, buffering 
is turned off, as in: 

setbuf( stdin, NULL ); 

The setbuf() function does not return a value. 

The setvbuf() function is similar to setbuf() , but it is a bit more elaborate. 
It takes two additional arguments that enable you to specify the type of 
buffering (line, block, or no buffering), and the size of the array to be 
used as the buffer. The buffer type should be one of three symbols 
(defined in stdio.h): 

JOFBF 

JOLBF 

JONBF 

block buffering 

line buffering 

no buffering 

To turn buffering off, therefore, you would write: 

stat = setvbuf( stdin, NULL, _IONBF, 0 ); 

The setvbufO function returns a non-zero value if it is successful. If, for 
some reason, it cannot honor the request, it returns zero. Consult 
Appendix A for more information about these two functions. 



www.manaraa.com

360 Chapter 11 

11.9 Random Access 
The previous examples accessed files sequentially, beginning with the first 
byte and accessing each successive byte in order. For a function such as 
copyfile 0, this is reasonable since you need to read and write each byte 
anyway. It's just as fast to access them sequentially as any other way. 

For many applications, however, you need to access particular bytes in 
the middle of the file. In these cases, it is more efficient to use C's two 
random access tunctions-fseek 0 and fteU O. 
The fseekO function moves the file position indicator to a specified 
character in a stream. The prototype for fseekO is: 

int fseek( FILE *stream, long int offset, 
int whence ); 

The three arguments are: 

stream 

offset 

whence 

A file pointer. 

An offset measured in characters (can be positive or 
negative) . 

The starting position from which to count the offset. 

There are three choices for the whence argument, all of which are 
designated by names defined in stdio. h: 

SEEK_SET 

SEEK CUR 

SEEK END 

The beginning of the file. 

The current position of the file position indicator. 

The end-of-file position. 

For example, the statement, 

stat = fseek(fp, 10, SEEK_SET) 

moves the file position indicator to character 10 of the stream. This will 
be the next character read or written. Note that streams, like arrays, 
start at the zero position, so character 10 is actually the 11th character in 
the stream. 

The value returned by fseekO is zero if the request is legal. If the request 
is illegal, fseekO returns a non-zero value. This can happen for a variety 
of reasons. For example, the following is illegal if fp is opened for 
read-only access because it attempts to move the file position indicator 
beyond the end-of-file position: 

stat = fseek(fp, 1, SEEK_END) 

Obviously, if SEEK_END is used with read-only files, the offset value 
must be less than or equal to zero. Likewise, if SEEK_SET is used, the 
offset value must be greater than or equal to zero. 



www.manaraa.com

Input and Output 361 

For binary streams, the offset argument can be any positive or negative 
integer value that does not push the file position indicator out of the file. 
For text streams, the offset argument must be either zero or a value 
returned by !tell O. 

The !tellO function takes just one argument, which is a file pointer, and 
returns the current position of the file position indicator. !tell 0 is used 
primarily to return to a specified file position after performing one or 
more 110 operations. For example, in most text editor programs, there is 
a command that allows the user to search for a specified character string. 
If the search fails, the cursor (and file position indicator) should return to 
its position prior to the search. This might be implemented as follows: 

cur-pos = ftell(fp); 
if (search(string) == FAIL) 

fseek(fp, cur-pos, SEEK_SET); 

Note that the position returned by!tellO is measured from the beginning 
of the file. For binary streams, the value returned by!tellO represents 
the actual number of characters from the beginning of the file. For teXt 
streams, the value returned by !tell 0 represents an 
implementation-defined value that only has meaning when used as an 
offset to an !seekO call. 

The example in the next section illustrates random access, as well as 
some of the other 110 topics discussed in this chapter. 

11.9.1 Printing a File in 'Sorted Order 
Suppose you have a large data file composed of records. Let's assume 
that the file contains one thousand records, where each record is a 
VITALSTAT structure, as declared below: 

#define NAME_LEN 19 
typedef char NAME [NAME_LEN] ; 
typedef struct date { 

unsigned day: 5, 
month: 5, 
year : 11; 

} DATE; 
typedef struct vitalstat 
{ 

NAME vs_name; 
char vs_ssnum[ll]; 
DATE vs_date; 
char vs_jersey; 

} VITALSTAT; 



www.manaraa.com

362 Chapter 11 

Suppose further that the records are arranged randomly, but you want to 
print them alphabetically by the name field. First, you need to sort the 
records. 

There are two ways to sort records in a file. One is to actually rearrange 
the records in alphabetical order. However, there are several drawbacks 
to this method. One drawback is that you need to read the entire file 
into memory, sort the records, and then write the file back to the storage 
device. This requires a great deal of I/O power. It also requires a great 
deal of memory since the entire file must be in memory at once. (There 
are ways to sort a file in parts, but they are complex and require even 
more 110 processing.) Another drawback is that if you add records in 
the future, you need to repeat the entire process. 

The other sorting solution is to read only the part of the record that you 
want to sort (called the key) and pair each key with a file pointer (called 
an index) that points to the entire record in the file. Sorting the key 
elements involves less data than sorting the entire records. This is called 
an index sort. 

Suppose that the first five records have the following values. 

Jordan, Larry 
Bird, Michael 
Erving, Isiah 
Thomas, Earvin 
Johnson, Julius 

043-12-7895 
012-45-4721 
065-23-5553 
041-92-1298 
012-22-3365 

The key/index pairs would be: 

index 
o 
1 
2 
3 
4 

key 
Jordan, Larry 
Bird, Michael 
Erving, Isiah 
Thomas, Earvin 
Johnson, Julius 

.5-11-1954 
3-24-1952 
11-01-1960 
1-21-1949 
7-15-1957 

Instead of physically sorting the entire records, we can sort the key/index 
pairs by index value: 

1 
2 
4 
o 
3 

Bird, Michael 
Erving, Isiah 
Johnson, Julius 
Jordan, Larry 
Thomas, Earvin 

The beauty of the indexing sort method is that you don't need to 
rearrange the actual records themselves. You need only sort the index, 
which is usually a smaller task (in otir example, the records are so short 



www.manaraa.com

Input and Output 363 

that there isn't much difference between sorting the records themselves 
and sorting the entries in the index file). To figure out the alphabetical 
order, though, you do need to read in the name field of each record. 

The following function reads the key field of every record, and stores 
them in an array of structures that contain just two fields-the record id 
(index) and the key. 

We assume that the data file has already been opened, so that the 
function is passed a file pointer. The include file recs. h contains the 
following: 

'include "vitalstat.h" 
'include <stdio.h> 
'include <stddef.h> 
'define MAX_REC_NUM 1000 
'define NAME_LEN 19 
typedef struct { 

int index; 
char key[NAME_LEN]; 

} INDEX; 



www.manaraa.com

364 Chapter 11 

/* Reads up to max_rec_num records from a file and 
* stores the key field of each record 
* in an index array. Returns 
* the number of key fields stored. 
*/ 

'include "recs.h" 

int get_records( data_file, names_index, max_rec_num) 
FILE *data_file; 
INDEX names_index[] ; 
int max_rec_num; 
{ 

} 

int offset = 0, counter = 0; 

for (k = 0; !feof( data_file) && 
counter < max_rec_num; k++) 

{ 

} 

fgets( names_index[k] .key, NAME_LEN, data_file ); 
offset += sizeof(VITALSTAT); 
if (fseek( data_file, offset, SEEK SET) && 

(!feof( data_file ))) 
exit ( 1 ); 

counter++; 

return counter; 



www.manaraa.com

Input and Output 365 

The function reads the first NAME~EN characters of each record using 
fgetsO and stores them in the array names_index, then moves the file 
position indicator to the beginning of the next record with fseek O. In thi$ 
way, we avoid reading extraneous parts of the record. In reality, of 
course, the 1/0 buffering mechanism fetches blocks of 512 or 1024 
characters, so the entire records are read anyway. Within each buffer, 
however, we need only access the first field in each record. This saves us 
memory-to-memory data copying time, even though we don't save any 
device-to-memory processing time. For large records, which span 
blocks, this approach could also save you device-to-memory processing 
time. 

We include some error checking to ensure that the fseekO request is 
legitimate. If fseekO returns an error that is not an end-of-file 
condition, we exit the program with an error code. Otherwise, when an 
end-of-file condition exists, we return the number of records read, 
which is also the number of index fields stored in the array. 

Note that the offset value is computed by taking the size of the 
VITALSTAT structure. By using the sizeof operator, we make the 
function more portable, since the size of shorts may vary from one 
machine to another. In addition, the structure may contain gaps due to 
alignment restrictions. 

The next task is to sort the array of NAMESJNDEX structures. This 
function, which makes use of the library function qsort 0, is shown 
below. The return value is a pointer to an ordered array.:. of 
NAMES JNDEX structures. 



www.manaraa.com

366 Chapter 11 

/* Sort an array of NAMES_INDEX structures by the 
* name field. There are index_count elements to be 
* sorted. Returns a pointer to the sorted array. 
*/ 

#include <stdlib.h> /* Header file for qsort() */ 
#include "recs.h" 

void sort_index( names_index, index_count) 
INDEX names_index[] ; 
int index_count; 
{ 

int j; 
static int compare_func(); /* 

* 
*/ 

Defined in this 
file. 

/* Assign values to the index field of each 
* structure. 

} 

*/ 
for (j = 0; j < index_count; j++) 

names_index[j] . index = j; 

qsort( names_index, index_count, 
sizeof(INDEX) , compare_func ); 

return names_index; 

static int compare_func( p, q ) 
NAMES_INDEX *p, *q; 
{ 

return strcmp( p->name, q->name ); 
} 

The next step is to print out the records in their sorted order. We 
definitely need to use jseekO for this function because we need to jump 
around the file. We can compute the starting point of each record by 
multiplying the index value with the size of the VITALSTAT structure. If 
each VITALSTAT structure is 40 characters long, for example, record 50 
will start at character 2000. After positioning the file position indicator 
with jseekO, we use jreadO to read each record. Finally, we print each 
record with a printjO call. 



www.manaraa.com

Input and Output 

/* Print the records in a file in the order 
* indicated by the index array. 
*/ 

#include recs.h 

void print_indexed_records( data_file, index, 
index_count ) 

FILE *data_file; 
INDEX index[]; 
int index_count; 
{ 

} 

VITALSTAT vs; 
int j; 

for (j = 0; j <= index_count; j++) 
{ 

} 

if (fseek( data_file, 
sizeof(VITALSTAT) * index[j] . index, 
SEEK_SET) ) 

exit ( 1 ); 
fread( &vs, 1, sizeof(VITALSTAT), data_file ); 
printf( "%20s, %hd, %hd, %hd, %12s", vS.name, 

vs.bdate.day, vs.bdate.month, 
vs.bdate.year, vS.ssnum ); 

367 

To make this program complete, we need a main 0 function that calls 
these other functions. We have written mainO so the filename can be 
passed as an argument. 



www.manaraa.com

368 Chapter 11 

'include "recs.h" 

main( argc, argv 
int argc; 
char *argv[]; 
{ 

} 

extern int get_records(); 
extern void sort_index(); 
extern int print_indexed_records(); 

FILE *data_file; 
static INDEX index [MAX_REC_NUM] ; 

if (argc != 2) 
{ 

} 

printf( "Error: must enter filename\n" ); 
printf ( "Filename: " ); 
scanf( "%s", filename ); 

else 
filename = argv[l]; 

if «data_file = fopen( filename, "r" » == NULL) 
{ 

} 

printf( "Error opening file %s.\n", filename ); 
exit ( 1 ); 

num_recs_read = get_index( data_file, index, 
MAX_REC_NUM ); 

sort_index ( index, num_recs_read ); 
print_indexed_records( data_file, index, 

num_recs_read ); 
exit ( 0 ); 



www.manaraa.com

Input and Output 

getehar() 

gets() 

printf() 

putehar() 

puts() 

scanf() 

fclose() 

fflush() 

fgete() 

fgets() 

Reads the next character from the stan­
dard input stream. getchar() is identical to 
gete(stdin) . 

Reads characters from stdin until a newline 
or end-of-file is encountered. 

Outputs one or more values according to 
user-defined formatting rules. 

Outputs a single character to the standard 
output stream. putehar() is identical to 
pute (stdout). 

Outputs a string of characters to stdout, 
appending a newline character to the end 
of the string. 

Reads one or more values from stdin, in­
terpreting each according to user-defined 
formatting rules. 

Table 11-3. 110 to stdin and stdout. 

Closes a stream. 

Flushes a buffer by writing out everything 
currently in the buffer. The stream remains 
open. 

Same as gete(), but it is implemented as a 
function rather than a macro. 

Reads a string from a specified input 
stream. Unlike gets(), fgets() enables you 
to specify a maximum number of charac­
ters to read. 

Table 11-4. 110 to files (continued on next page) 

369 



www.manaraa.com

370 

lopenO 

/print/O 

/putcO 

/putsO 

/readO 

/reopenO 

/scan/O 

/seekO 

/tellO 

/writeO 

getcO 

putcO 

ungetcO 

Chapter 11 

Opens and possibly creates a file, and asso­
ciates a stream with it. /open 0 takes two 
arguments: a character string identifying 
the file, and a mode specification that de­
termines what types of operations may be 
performed on the file. 

Exactly like print/O, except that output is 
to a specified file. 

Writes a character to a stream. This is the 
same as putcO, but it is implemented as a 
function rather than a macro. 

Writes a string to a stream. This is like 
putsO, except that it does not append a 
newline to the stream. 

Reads a block of binary data from a 
stream. The arguments specify the size of 
the block and where it should be stored. 

Closes a stream, and then reopens it for a 
new file. This is useful for recycling a 
stream, particuarly stdin, stdout, and 
stderr. 

Same as scan/O, except that data is read 
from a specified file. 

Positions a file position indicator, enabling 
you to perform random access on a file. 

Returns the position of a file position indi­
cator. 

Writes a block of data from a buffer to a 
stream. 

Reads a character from a stream. 

Writes a character to a specified stream. 

Pushes a character onto a stream. The next 
call to getcO returns this character. 

Table 11-4. I/O to files. (continued from preceding page) 



www.manaraa.com

Input and Output 

clearerr() 

feof() 

ferror() 

remove() 

rename() 

tmpfileO 

tmpnam() 

Resets the error and end-of-file indicators 
for the specified stream. 

Checks whether an end-of-file was en­
countered during a previous read opera­
tion. 

Returns an integer error code (the value of 
errno) if an error occurred while reading 
from or writing to a stream. 

Table 11-5. Error-Handling Functions. 

Deletes a file. 

Renames a file. 

Creates a temporary binary file. 

Generates a string that can be used as the 
name of a temporary file. 

Table 11-6. File Management Functions. 

371 



www.manaraa.com

372 Chapter 11 

Exercises 
1. Write a program that implements the #include preprocessor 

command. 

2. Write a function called compress() that removes all extraneous 
white space from a C source file. (Warning: don't remove white 
space from character and string constants.) 

3. Write a program to check for proper pairing of braces and 
parentheses in a C source file. 

4. Write a program that counts the number of characters, words, 
and lines in a file. 

5. Write a program that copies all files in argv to stdout. 

6. Write a program that enables you to enter data into a file 
containing VITALSTAT structures. 



www.manaraa.com

Chapter 12 

Software Engineering 

"For 'tis the sport to have the engineer 
Hoist with his own petar." - Shakespeare, Hamlet 

Though the cost of computer hardware-the silicon chips containing the 
thousands of transistors that form the instruction set and memories-has 
shown a consistent trend downward in cost over the years, the cost of 
software has not followed suit. The high cost of software is due largely 
(and paradoxically) to the ease and flexibility with which it can be 
shaped. The ease with which software can be created and changed can 
also lead to unworkably complex systems. 

Unlike the physical limitations imposed on hardware (such as the number 
of gates you can fit on a chip, the speed of electrons in the medium, and 
the amount of heat that can be dissipated), software is limited mainly by 
the imagination of the software engineer. While flexibility is an important 
aspect of software, unrestrained use of this flexibility is a siren song that 
all responsible software engineers must resist. 

As John Shore points out in his book, The Sacher Tort Algorithm, the 
curse of flexibility is both deceptive and seductive. Without the discipline 
of software engineering, unsuspecting programmers soon find themselves 
deeply mired in the tar pits of complexity. Using the techniques of soft­
ware engineering, it takes a little longer to be caught in those pits. 

In this chapter we cover the basic elements of software engineering. One 
aspect of software engineering that we have discussed throughout this 



www.manaraa.com

374 Chapter 12 

book is good programming style. Programming style consists of three im­
portant qualities: 

Readability Write the source code so that it is readable to 
you and others. This includes aesthetic format­
ting, meaningful variable names, and consistency 
within and across source files. 

Portability Write the code so that it is easy to port to other 
machines. If possible, avoid non-standard fea­
tures, and use the standard library runtime rou­
tines rather than writing your own. 

Maintainability As you write the code, think about how you 
might want to change or extend it in the future. 
Put data structure definitions in header files 
where changes will be automatically broadcast to 
all source files that include the header file. Use 
#define to create constant names for parameters 
that appear more than once. 

Table 12-1 summarizes some of the stylistic issues that we addressed ear­
lier. Though style is important, there are other aspects of software engi­
neering that are every bit as critical. These include: 

• Product Specification 

• Software Design 

• Project Planning and Cost Estimation 

• Software Tools for Software Production 

• Debugging Techniques 

• Testing 

• Performance Analysis 

• Documentation 

• Source Control and Organization 

To illustrate these principles, we are going to show the steps we per­
formed to develop an interpreter for the C language. Unlike compilers, 
interpreters enable you to execute source code immediately after you 
write it, without going through the compilation and linking stages. On the 
downside, however, interpreted programs usually take longer to execute 



www.manaraa.com

Software Engineering 375 

than compiled programs. For this reason, interpreters are often used in 
the development stage, where execution speed is less important than 
compilation time. When the program has been written and debugged, it 
is compiled to produce efficient executable code. Interpreters are also 
useful learning tools because of their interactive nature. 

The interpreter we develop in this chapter is only a subset of a complete 
C interpreter. The techniques we use in its development illustrate princi­
ples that hold true for all large projects. See Appendix F for the com­
plete listings of all modules described in this chapter. 

Poor Programming Style Good Programming Style 

Putting extern declarations Putting extern declarations 
in .c source files. in .h header files. 

Sharing data among Sharing data by passing 
functions by making the arguments. 
data global. 

Giving data global scope Using static to give data 
when file scope would and functions file scope. 
suffice. 

Creating numerous Creating fewer, more 
special-purpose functions. general primitives. 

Using non-mnemonic Using names that connote 
names. usage. 

Using numeric constants. U sing named constants. 

Using goto. Using structured control 
flow statements. 

Writing redundant code Using functions for code 
sequences. sequences that are used 

repeatedly. 

Table 12-1. Summary of Programming Style Issues. 



www.manaraa.com

376 Chapter 12 

12.1 Product Specification 
To produce a quality software product, it is important that the product be 
well understood before the work starts. To ensure that everyone involved 
has the same idea about what the product is supposed to do, it is impor­
tant to develop a detailed specification that describes exactly how the 
product is expected to behave. A product specification does not detail 
how the product is to be implemented (this is covered in a project plan) . 
Instead, it describes how the final product will appear to users. 

A product specification is useful to both users and project members. Us­
ers can tell early on whether the product will meet their needs. Project 
members will know just what their software is supposed to do. It is the 
responsibility of the product designers to make sure that no unreasonable 
expectations are set. Vague language such as "fast response" or "easy to 
use" should be avoided. "Fast" may mean ten minutes, a second, or less 
than a microsecond. How easy something is to use can be just as relative. 

The two cardinal rules for product specifications are consistency and sim­
plicity. To attain these goals, it is best if the specification is driven by one 
person. Committees are good for review but poor for design. This well­
known truism is memorialized in the old joke that a camel is a horse de­
signed by committee. 

A specification of a software product can get complicated fast. so you 
should always be alert to signs of needless complexity. One indication of 
unnecessary complexity is the existence of several ways to perform the 
same operation. For instance, some software products have two com­
mands-"date" and "time"-that perform the same operation. This may 
not create a programming problem, but it makes the user interface messy. 
It is confusing to users who naturally assume that every command has a 
unique purpose. 

Another sign of needless complexity is verbosity. This is especially true 
of interactive software products. For example, suppose your program 
needs a way to return the current date and set the date. Rather than cre­
ate two commands to perform these operations, it is better to have one 
command, "date", that returns the date if there is no argument, or sets 
the date if an argument is present: 

$ date 
1/29/87 
:$. date 1/30/87 

.:::$ .. date 
1/30/87 



www.manaraa.com

Software Engineering 377 

Note that this is superior only for interactive products where readability is 
less important than succinctness and typing ease. For batch programs 
(programs that run without human interaction), readability is more im­
portant than succinctness. For a batch program, therefore, it would be 
better to define two commands, "getdate" and "setdate". 

The ideal specification consists of a few primitive operations out of which 
all the user requirements can be met. 

You shouldn't spend too much time on the initial specification. Typi­
cally, a specification receives feedback from the software design phase. 
As the product gets built, system limitations usually force the designers to 
rewrite the specification. When the product reaches the state where it 
can be run, experimentation usually results in changes to both the soft­
ware design and the product specification. 

Because of this feedback process, we advocate an evolutionary approach 
in which an executable prototype is developed as soon as the basic fea­
tures of the specification and design are fairly firm. The prototype can 
then undergo enhancements in parallel with the addition of new features 
in the design specification. This method results in fewer surprises during 
the course of development because progress can be tracked by adding 
new levels of functionality. Each level is called a milestone. 

Sometimes it is not clear what the set of primitives should be, especially 
when designing interactive programs. Parts of the product that drive the 
user interface, such as the assignment of edit functions to keys on the 
keyboard, should be designed with enough abstraction so that they can 
adapt to changes in the specification. There are even screen-design tools 
available that enable you to experiment with different user interfaces. 
This can make the product specification process much easier. 

The product specification is usually the base document from which the fi­
nal user documentation is created. As such, it is important that this be 
kept accurate and current. 



www.manaraa.com

378 Chapter 12 

A good outline for a specification is as follows: 

1) Abstract of project. 

2) Command line interface. 

3) Input file syntax. 

4) Screen design. 

S) Output file format descriptions. 

6) Interactive command language (if any). 

7) Error messages. 

8) Future extensions. 

The specification for our C interpreter is shown below. This is a short 
specification. It benefits from pointing at specifications in other docu­
ments. Large projects, without benefit of prior specifications, may re­
quire hundreds, or even thousands. of pages to define product behavior. 

1. Abstract 

The intent of this project is to create an interpreter that supports 
a subset of the C language. It will support: 

• C scalar data types. 

• Most C expressions. 

• Some control-flow constructs. 

A typical session with the interpreter might look like the session 
shown in Figure 12-1. 

The goal is to write this interpreter in a way that illustrates the 
concepts of software engineering that would be used in projects 
many times larger than this one. 

2. Command Line Interface 

Unless a command line argument starts with the dash (-) charac­
ter, it is treated as a source file. This file will be read and pre­
parsed before the user receives a prompt. Any functions defined 
in the source files will be available to the user. 



www.manaraa.com

Software Engineering 379 

If a command line argument is prefixed with a dash character, it 
is parsed as an option flag to the interpreter. The valid option 
flags are: 

-dlex 

-dexp 

-dstmt 

Enables debugging information for the lexical 
analyzer. 

Enables debugging information for the expres­
sion parser. 

Enables debugging information for the statement 
parser. 

-run Runs the program as soon as it is read, and exits 
when finished. 

3. Input File Syntax 

The input file format is a subset of the C language as specified by 
the ANSI Standard. The following subsections describe the sup­
ported subset. 

3.1 Data Types 

The interpreter supports the following scalar types: char, 
short, int, long, float, double, void, and pointers. Arrays 
of the scalar type are also supported. 

The following are not supported: typedefs, structures, un­
ions, and enums. 

3.2 Expressions 

Precedence rules and conversion rules are as described by 
the ANSI Standard. 

3.2.1 Constants 

Fixed and floating-point constants are allowed as specified 
by the ANSI Standard. Double-quoted strings and 
single-quoted characters are allowed. 

Long and unsigned constants are not supported. 

3.2.2 Variables 

Variables of up to 31 characters are supported with standard 
C naming conventions. 



www.manaraa.com

380 Chapter 12 

3.2.3 Operators 

For the type double, the following C expression operators 
are supported: sizeof, =, +, - (unary), - (binary), *, I, <, >, 
<= ,> =, ==, !=, !, function call, and array reference. 

For the type int, the following C expression operators are 
supported: size of, =, +, - (unary), - (binary), *, I, %, I, & 
(binary), A, <, >, <=, >=, ==, !=, !, ++, --, », «, -, function 
call, and array reference. 

The following operators are not supported: ?:, casts, ->, 
&&, II, and. 

3.3 Statements 

The following statement constructs are supported: expres­
sions, for, while, if, break, return, and compound state­
ments. 

The following statement constructs are not supported: 
switch, continue, goto, do ... while, and statement labels. 

3.4 Preprocessor Directives 

No preprocessor directives are supported. 

3.5 Library Functions 

The following runtime library functions are available: 
printfO, scanfO, exit 0, sin 0, cos 0, tan 0, sqrt 0, pow 0, 
exp 0, malloc 0, free 0, date 0, ctime 0, strcpy 0, strcmp 0, 
strcatO· 

4. Output File Specification 

None. 

5. Interactive Command Language 

The interpreter supports a command language, as described in 
the following subsections. 

5.1 Prompt 

The prompt consists of the string "cint> ". 



www.manaraa.com

Software Engineering 381 

5.2 run Command 

The run command starts execution of the procedure main (). 

5.3 list Command 

The list command displays the entire entered program to 
standard output. 

5.4 Editing Capability 

None. 

5.5 Command Set 

The complete C subset as described in Section 3 can be 
typed in from the console, after all command-line files have 
been read in. 

Additionally, any expression that does not parse as a declara­
tion, or one of the extensions in Section 3.6, will be parsed 
as a C expression. 

6. Errors 

The interpreter supports the following diagnostic error messages. 
Italicized words represent parameters that are replaced by vari­
able names or character strings. 

1 Expected symbol token 
2 Missing ']' in array declaration 
3 Error in arg list. Wanted a symbol, not a string 
4 Bad argument syntax 
5 Can't have nested functions 
6 Expected '{' 
7 Missing '(' after function name 
8 Missing 'r in function call 
9 Missing ']' 
10 Non-integer operand to 'I' 
11 Non-integer operand to '-' 
12 Bad operand to '++' 
13 Bad operand to '--' 
14 Unmatched parentheses 
15 Unexpected token in expression: string 
16 Bad operand to '++' 
17 Bad operand to '--' 
18 Bad subscript expression 



www.manaraa.com

382 

19 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 
30 
31 
32 
33 

Missing']' in array subscript 
Illegal LHS to assign op 

Chapter 12 

Unexpected token in expression: 'string' 
End of file before end of comment. 
No main function 
Missing semicolon 
Missing '(' after if 
Missing ')' after if 
Missing '(' after while 
Missing ')' after while 
Missing '(' after for 
Missing ')' after for 
Internal error in cint, premature token list end 
Missing '}' 
Bad function name string 

12.2 Software Design 
Once the product is specified, a plan of attack must be formulated. This 
involves deciding on the various phases of processing and the major data 
structures. 

First, you should consult the library. There is a wealth of literature about 
data structures and algorithms for many different software disciplines. 
For instance, compiler technology has evolved to the point where it is 
well-understood [see Aho & Ullman, Principles of Compiler Design]. 
Graphics software includes a rich set of common algorithms and data 
structures [see Foley & Van Dam, Fundamentals of Interactive Graph­
ics]. Operating System design is well laid out in A. Tannenbaum's Oper­
ating System Design. Algorithms for database systems can be found in C. 
J. Date's Database Design. Other software disciplines are also docu­
mented to varying degrees. So to begin high level-design of a software 
product, you should first gain a good understanding of the problem and 
past solutions. 

A common design method that we have found effective is called stepwise 
refinement, which was first enunciated by Niklaus Wirth in his 1971 
CACM paper, Program Development by Stepwise Refinement. In this 
method, you carve up the problem at a high level of abstraction, and 
then address each subproblem, dividing it into smaller, less abstract parts 
until each part can be easily implemented. The highest level of division is 
typically a program, though it may be a set of programs; at the next level, 
the program consists of cohesive sets of functions, called modules. A 
module consists of locally scoped (via the static keyword) support rou­
tines and globally visible interface routines. You should have one source 
file (which optionally includes header files) per module. 



www.manaraa.com

Software Engineering 383 

There are three basic phases to software design: 

1. Identify major divisions of functionality (Le. define what goes 
into each module). 

2. Identify the major data structures that are shared by modules 
identified in Step 1. 

3. Create an additional module for each data structure identified in 
Step 2. 

Applying the first step in the design of our interpreter, we arrive at the 
modules shown in Table 12-2. 

Module Name Purpose 

main.c Read the command line and provide the 
starting point for the program. 

lex.c "Tokenize" the input (Le., divide the 
input into meaningful C language tokens). 

decl.c Parse declarations. 

expr.c Parse and evaluate expressions. 

sym.c Manipulate symbols. 

stmt.c Parse and execute statements. 

Table 12-2. List of Modules in the C Interpreter. 

The goal in dividing a program into modules is to find clearly demarcated 
and cohesive sections that are not strongly interrelated with other sec­
tions. Once the modules are set forth, the same divide and conquer 
method that we used for determining modules can be used to decide 
upon the functions within a module. For example, sym.c includes func­
tions to: 

• Enter a symbol. 

• Find a symbol. 

• Get the type of a symbol. 

• Set the type of a symbol. 



www.manaraa.com

384 Chapter 12 

• Get the value of a symbol. 

• Set the value of a symbol. 

The fewer inter-module dependencies that exist, the easier the program 
is to read and maintain. Some of the modules we defined for our inter­
preter are similar to the chapters we chose for the book. This is not sur­
prising since the same goals of clarity and cohesion guided our organiza­
tion of this book. 

In Steps 2 and 3 of the design process, we identified the major data struc­
tures required by each module and created additional modules to manage 
access to these structures: 

sym.c 

memory.c 

Manage the data structure for the tokenized in­
put stream. 

Manage the symbol table. 

Control access to program memory. 

In addition to these modules, we created several header files that contain 
declarations and definitions used across modules. 

Header Files 

cint.h 
sym.h 
lex.h 
token_st.h 

Used by all modules. 
Defines values and data structures used by sym. 
Defines values and data structures used by lex. 
Defines values and data structures used by token_st. 

12.2.1 Choosing Efficient Data Structures and 
Algorithms 

An important part of the design stage involves selecting appropriate data 
structures and efficient algorithms for accessing the data structures. 
There a number of factors to consider when designing data structures and 
algorithms. How fast is the algorithm in processing typical data? How 
much memory will the structure require? Will it be easy to change if we 
want to add new capabilities? In this section, we give a taste of what's in­
volved in resolving these issues by discussing the symbol table in cint. 

The symbol table is the data structure the holds information about each 
variable that is declared in a program. We need to know the variable's 
name, its data type, its storage class, and its location in memory. All of 
this information is stored in a structure named SYM. 



www.manaraa.com

Software Engineering 385 

Given N number of symbols declared in a program, we need a way of or­
ganizing the SYM structures so that they can be easily accessed. The 
most obvious organization scheme is a linked list. Each time a new sym­
bol is declared, we add an element to the list. Unfortunately, searching 
through a linked list for a particular element is relatively inefficient. In 
the best case, the element we want will be the first element in the list. 
But in the worst case, it will be the last element, which means we will 
have to look at N elements before we find the right one. On average, the 
number of look-ups to find a particular element is N12, which is not very 
good. 

A better way to organize the symbol elements is in the form of a binary 
tree. In chapter 5, we introduced binary trees as a way to parse expres­
sions, but binary trees are also widely used to store symbol tables. In this 
method, each symbol has two branches coming off it-a left branch and a 
right branch. The left points to all symbols that are alphabetically before 
the node and right branch points to all symbols that are alphabetically af­
ter the node. 

Table 12-1 shows a binary tree for 15 symbols. In the case of a binary 
tree, the maximum number of look-ups is the same as the number of lev­
els in the tree. To find x, for instance, we need to go through pI, sub­
script, and var. Note that the number of symbols on each level is 2 to 
the m power, where m is the level number. If the number of symbols is 
N, therefore, the maximum number of levels (and hence look-ups) is 
log2N. This is considerably better than N, which is the maximum number 
of look-ups for the linked list method. 

Figure 12-1. Balanced Binary Tree Implementation of a Symbol 
Tab/e. 

Note, however, that the number of levels is log2N only if the tree is bal­
anced-that is, if each node has the same number of nodes below it on 
the left as on the right. If the tree is unbalanced, as in Figure 12-2, the 



www.manaraa.com

386 Chapter 12 

maximum number of look-ups approaches N again. In fact, a tree that is 
completely unbalanced is identical to a simple linked list. It is a difficult 
task to keep a tree balanced as you add symbols to it. (We leave it as an 
exercise to the reader to design an algorithm that turns an unbalanced 
tree into a balanced tree.) 

Figure 12-1. Unbalanced Binary Tree Implementation of a Symbol 
Table. 

Because it is hard keep a binary tree balanced, it is often better to use an 
alternative method called a hash table. A hash table is an array of point­
ers, each of which typically points to the beginning of a linked list. Each 
symbol is assigned to one of the linked lists. To determine which linked 
list a symbol is assigned to, you need to convert the symbol name into an 
integer that serves as the subscript to the array. For example, the symbol 
name var might be converted to the integer value 5, which would then be 
used as the subscript for the array of pointers. var would be stored some­
where in the linked list pointed to by element 5 of the array. 

Ideally, each linked list should be short so that once the array subscript is 
determined, the number of look-ups is minimal. In a very sparse hash 
table, for example, each linked list contains only one or two elements. so 
the maximum number of look-ups is two. Note, however, that you must 



www.manaraa.com

Software Engineering 387 

allocate space for the entire array at the start of the program. It is some­
times impractical, therefore, to create an array large enough to ensure 
that the hash table will always be sparse. Also, it is important to convert 
the symbol names into integers in such a way that the resulting integer 
values are spread evenly across the range of subscript values. The follow­
ing function is a good hash function that returns a number between 0 and 
HASHSIZE based on the values of all the characters in the symbol name. 
Experience has shown that this function produces a uniform distribution. 

#define HASHSIZE 211 /* The size of the table should 
* be a prime number. 
*/ 

int hash_function( p ) 
char *p; 

{ 

} 

int hash_val = 0; 

for (; *p; p++) 
hash_val = hash_val * 65599 + *p; 

hash_val %= HASHSIZE 
return hash_val; 

Assuming that symbols are evenly distributed throughout the hash table, 
the maximum number of look-ups is simply Nih, where h is the size of 
the table. For example, if there are 400 symbols and 200 linked lists, 
each linked list will contain two entries, so the maximum number of 
look-ups will be two. In practice, the symbols are never distributed this 
evenly, but the number of look-ups is still likely to be smaller than in a 
binary tree model. Note, however, that there is a random element to 
hash tables that makes it impossible to predict in a deterministic way ex­
actly how efficient it will be. It takes some trial-and-error testing to ar­
rive at the ideal size for the table and the best algorithm for producing a 
uniform distribution of symbols. 

This discussion of searching algorithms barely touches the surface of 
searching algortihms, but it does show that you need to devote consider­
able thought and research into choosing efficient algorithms at the design 
stage. For more information about this subject, we recommend the third 
volume ("Searching and Sorting Algorithms") of The Art of Computer 
Programming, by Donald E. Knuth. Another good book on this subject 
is Design and Analysis of Computer Algorithms by Aho, Hopcroft, and 
Ullman. 

Regardless of what algorithm you select, you should implement the data 
structure so that it can be easily modified for different algorithms. In our 
version of cint, for example, we use a simple and inefficient linked list or­
ganization for the symbol table. But the symbol table is a well abstracted 



www.manaraa.com

388 Chapter 12 

module in that it hides its implementation from the other parts of the 
product. Given this abstract interface, it is relatively easy to modify the 
program to use a more efficient searching algorithm. We pose this en­
hancement as an exercise for the reader. 

12.2.2 Information Hiding 

To control software complexity, it is often useful to limit the amount of 
information that each module can "see." Each module "owns" certain 
data objects on which it operates. The ability to operate on an object im­
plies an understanding of the object's internal structure. A module 
should give other modules enough information to properly declare com­
mon objects, but not so much information that the other modules can 
also operate on the objects. Developing mechanisms to isolate objects 
from external modules is a software engineering technique known as in­
formation hiding. Information hiding makes it easier to modify a data 
structure because only one module is dependent on the internal organiza­
tion of the object. 

There are a number of ways to implement information hiding. We have 
borrowed a notion called private types from the Ada programming lan­
guage. Private types expose enough information about data structures so 
that other modules can declare them properly for type-checking pur­
poses, but cannot access the data structures. 

In C, we implement private types by conditionally compiling two declara­
tions of the symbol data structure in sym.h. The detailed declaration is 
compiled for the sym. c module, while a deliberately vague declaration is 
compiled for other modules. The detailed declaration is compiled only if 
the macro SYM_OWNER is defined to expand to a non-zero value (it is 
defined in sym.c, but not in the other modules): 

struct -private_type_sym 
{ 

char *sym_name; 
VALUE sym_value; 

} ; 

Nif SYM_OWNER 
typedef struct -private_type_sym SYM; 

Nelse 
typedef struct { 

Nendif 

char _x[sizeof struct -private_sym] ; 
} SYM; 



www.manaraa.com

Software Engineering 389 

If SYM_OWNER is defined, SYM is declared as a structure with two 
members, sym_name and sym_value. If SYM_OWNER is not defined, 
SYM is declared as a structure with an array of char. In either case, the 
size of SYM is the same, so there won't be conflicts. External modules, 
however, will not be able to access the module through the member 
names. 

12.3 Project Management and Cost 
Estimation 

Like any construction endeavor, creation of software requires manage­
ment of the necessary people and resources. Management will only be 
effective if there is, at the outset, a good understanding of the costs in 
terms of people, time, and computing power. In this section, we discuss 
techniques for estimating these costs and providing effective manage­
ment. 

A seminal work on the software engineering process is The Mythical 
Man-Month by Dr. Fredrick P. Brooks. Dr. Brooks describes the pitfalls 
and obstacles he experienced in the development of IBM's OS/360, a 
large operating system that runs on IBM's 360 series of mainframes. De­
spite the fact that it was written 15 years ago, and despite the many ad­
vances made in software production since that time, many of Brooks' ob­
servations are still valid today. 

Unlike other engineering disciplines, software is pure abstraction. As Dr. 
Brooks points out, a programmer "builds his castles in the air, from air, 
creating by exertion of the imagination." The civil engineer at least 
knows the distance his bridge has to span. From that he has a rough esti­
mate of the bricks or steel beams required to make his bridge. With soft­
ware there are no physical parameters to measure against. The only 
guides are previous attempts at solving similar problems. 

Brooks recommends that you plan to throwaway the first attempt, since 
it's likely to be worthless. Fortunately, there is more literature available 
today on various software efforts than there was in 1972 when Brooks 
wrote of his experiences, so the first attempt is often salvageable. Still, 
there is no substitute for having done it before. 



www.manaraa.com

390 Chapter 12 

Brooks, based on his experience as IBM's O/S 360 project manager, 
claims that most software product schedules can be broken down as fol­
lows: 

1/3 product specification and scheduling personnel 

1/6 coding 

1/ 4 component testing and early system testing 

1/4 complete system integration and testing 

Our experience in the production of compilers, editors, and debuggers 
supports this contention. If the schedule does not allow for 50% debug­
ging and testing time, you will be faced with the choice of shipping a 
poor-quality product or delaying shipment in order to properly test and 
debug the system. 

When scheduling the development of a large product, you need to have a 
good understanding of all the major parts of the product. One of the arts 
in explaining difficult concepts is in finding the right way to split the con­
cept into smaller, more easily digested parts. It is exactly this partitioning 
that a project manager must perform. Ideally, the parts should be well­
defined tasks, with little need for communication with the rest of the 
product. Additionally, each task should require no more than one per­
son. When people have to spend time disputing large, ill-defined inter­
faces between sections, a lot of time and energy is wasted. If the parts 
are not well selected, and time has to be spent later in the project to 
repartition and hire and train more personnel, the project is likely to run 
way past its target date. 

The phenomenon of losing time due to the overhead of training more 
people, and choosing bad partitions gives rise to Brooks' law: 

Adding more people to a late software project makes it later. 

Partitioning allows each engineer to concentrate on his or her particular 
section of the product. It is important to keep the amount of interaction 
between one partition and other partitions to a minimum so that develop­
ment of different partitions can occur simultaneously. This is the notion 
of modularity. While modularity may result in redundant code across 
modules, it allows everyone to get on with their end of the effort without 
wasting time in endless design meetings. 

Tracking a project's progress can be a bit tricky. Initial progress is gener­
ally quite fast. As complexity builds, however, progress slows down. Our 
experience has shown that most products follow the development curve 
shown in Figure 12-3. In fact, as the curve suggests, by the time 90% of 
the functionality is in place, you are still only halfway to a shippable prod­
uct. 



www.manaraa.com

Software Engineering 

Functionality 

100% 
90% 

50% 

Time 50% 

Figure 12-3. Typical Software Development Curve. 

12.3.1 Project Planning 

391 

100% 

For scheduling purposes a project plan should be created that explains 
how the project is to be fulfilled. The project plan breaks down the task 
into manageable subtasks and gives time estimates for each subtask. De­
pendencies and milestones are mentioned as well. The granularity of 
such a schedule is usually a staff-week. There are various software prod­
ucts available to help with just this sort of scheduling. 

A common pitfall of software design is known as the NIH (Not Invented 
Here) syndrome. This refers to a tendency among some engineers to feel 
that if a product or subsystem was not invented by members of the design 
team, it can't be any good. There are many high quality software compa­
nies that will sell sources for all kinds of software products. A part of a 
responsible software design plan should include the option of buying part 
or all of the system from another source. 

A good outline for a project plan is as follows: 

1) Abstract 

2) Itemization of subtasks and time estimates 

3) Time lines and milestones (pert chart) 

4) Resource requirements (people, computers, disk storage, special 
hardware) 



www.manaraa.com

392 Chapter 12 

5) Other projects this project depends on 

6) Other projects that depend on this project working 

As an illustration, the following shows our project plan for the C inter­
preter. 

1) Functional Spec 

This document details a plan for implementing the specification 
for the C subset interpreter. 

2) Itemization of sub tasks and time estimates 

The following modules need to be written: 

Module 

memory manager 
lexical analyzer 
symbol table handler 
main (reads command line and 
handles file open/close) 
expression handler 
token stream manager 
declaration parser 
statement parser 
debug & test 

total time 

Time Estimate 

0.5 weeks 
2.0 weeks 
2.0 weeks 

1.0 weeks 
4.0 weeks 
2.0 weeks 
1.0 weeks 
1.0 weeks 
13.0 weeks 

26.5 weeks 

3) Time lines and milestones (pert chart) 

The overlap of some of the modules in Figure 12-4 indicates that 
some modules can be developed simultaneously. The overall 
time for project completion, therefore, can be decreased by add­
ing staff. It is clear from the figure that an additional program­
mer would cut our development time in half. 



www.manaraa.com

Software Engineering 393 

4) Resources required 

Machine: Any system that supports a C compiler and make utility 
(for example: any UNIX system or MS/DOS system) 

Software: A C compiler and make utility. 

Programmers: 1 

Disk storage: 10 megabytes of hard disk storage 

5) Other projects this project depends on 

None. 

6) Other projects that depend on this project 

Publication of this book, Software Engineering in C, depends on 
the successful completion of this project. 

test creation 

~ 

o 

expr 

sym 

stmt 

I token st 
add 2+2 

3 6 

declare 

assign to 
a variable 

9 12 

run: 
mainO 
{ 

testing 

printf ( "hello word\n"); 
} 

15 18 21 24 

pass 
test 
suite 

27 30 
Figure 12-4. Time Lines and Milestones for the cint Project. The 

lines coming up from the horizontal time line indicate 
major milestones. 



www.manaraa.com

394 Chapter 12 

12.3.2 Source Management 
For a large software product, with many subsystems and modules, and 
more than one programmer, it is important to organize the source files so 
that people don't get in each other's way. A good organization scheme is 
to create a directory for each subsystem and a directory for subsystem in­
clude files. For instance, if our interpreter included an editor and debug­
ger as subsystems, its source-file directory structure would look like Fig­
ure 12-4. 

Figure 12-4. Directory Structure for C Interpreter Project Containing 
Debug and Edit Subsystems. 

During development of the product, a version of the source tree is stored 
in a publicly accessible place. To work on particular files, an individual 
makes copies of the files, edits the private copies, and generates a private 
copy of the product using the public object files combined with the newly 
modified private object files. After testing the private version to make 
sure that the changes are correct, the modified source files are copied 
back into the public source tree, replacing the older files. 

A source-control system can be extremely useful in managing the source 
tree. A source-control utility maintains a log of changes to a source file, 
and a status of the file. For example, it keeps track of whether the file is 
logged out for editing, and who logged it out. That way, two people can't 
accidentally edit the same file at the same time, and enter incompatible 
changes. The change history is useful for removing ill-conceived features, 
or discovering what change has caused the latest bug. Under UNIX, sees 
is a popular source control utility. 

It is common for bugs to be introduced into a product by programmers 
who change one part of the program without realizing how the change will 
affect other parts of the product. For this reason, it is important that you 
record changes to source files. When new bugs crop up, the first place to 
look is in recently changed files. 



www.manaraa.com

Software Engineering 395 

12.4 Software Tools for Software 
Production 

A C compiler, as we have discussed in the prior 11 chapters, is a software 
tool for software production, as are editors and debuggers. A full C inter­
preter is also a valuable software tool for debugging because it shortens 
the compile-edit-debug cycle. There are a number of other tools that are 
helpful for efficient software production. In fact, there is an entire indus­
try, called Computer-Aided Software Engineering (CASE). that develops 
utilities to facilitate software production. The UNIX operating system in­
cludes the following utilities: 

flow 

grep 

lint 

prof 

Analyzes the function call tree. 

Finds every occurrence of a name in a set of files 
and prints out the file name and line containing 
the match. 

Examines C source files to detect potential bugs 
and non-portable constructs. 

Pinpoints CPU-expensive parts of a program. 

Most computer systems sold today also have source-code control and 
automatic product-build software tools available. These tools are indis­
pensable for building large software systems. A well-known source code 
control system under the UNIX system is sees. An even more famous 
UNIX software build utility is known as make. A good book on using and 
building software tools is Software Tools by Kernighan and Plauger. 

12.4.1 Automatic Product Building 
The idea behind automatic product building is that a single file describes 
how the parts of a product combine to make the final set of programs. 
For example, it lists the object files that need to be built, the header files 
that each object file depends on, and describes how the object files are to 
be linked together to create an executable image. More important, the 
build file lists dependencies for each object file. When any file is out of 
date with respect to the final product, only the parts of the product that 
need to be rebuilt are processed. 

The instructions for building a product are stored in a file called a build 
file. The build file serves two purposes: first. it specifies the minimum 
amount of work required to build a product; and second. it acts as a de­
sign document. detailing the dependencies and build rules for a product. 



www.manaraa.com

396 Chapter 12 

An automatic build utility also helps prevent version skew, a problem that 
occurs when an object file compiled with obsolete header files is linked 
with more current modules. 

The UNIX make utility gets its instructions for building programs from a 
build file named makefile. The makefile for cint follows: 

# makefile for cint - a subset C interpreter 
OBJECTS = expr.o lex.o sym.o main.o token_st.o stmt.o 

declare.o memory.o 
CFLAGS = -DDEBUG=l 
cint: $ (OBJECTS) 

CC -0 cint $(OBJECTS) 
$(OBJECTS): cint.h lex.h sym.h token_st.h 
# end of makefile 

The first line is a comment describing the make file (The pound sign (#) 
signifies a comment). The second line is a macro definition that associ­
ates the name OBJECTS with the names of the files to the right of the 
equal sign. In this case, the files are the objects required to build cint. 
The fourth line is another macro definition. CFLAGS holds the com­
mand line flags that are to be used when the make utility produces a C 
compile command line. In this case, the -DDEBUG=] option tells the C 
compiler to compile as if the line, 

#define DEBUG 1 

were inserted as the first line of the program. 

The lines with colons in them are called dependency lines. The filenames 
on the left-hand side of the colon depend on the filenames on the right­
hand side. For example, the line, 

cint : $ (OBJECTS) 

means that the executable file cint depends on all of the object files. The 
notation, 

$ (OBJECTS) 

expands the macro OBJECTS. If the line following a dependency starts 
with a tab, it is treated as a command to be issued by make whenever any 
of the objects on the right-hand side of a dependency line are newer 
than the object on the left-hand side. The command line in our example 
is: 

cc -0 cint $(OBJECTS) 



www.manaraa.com

Software Engineering 397 

If there is no command line present. make uses default rules for issuing 
commands that create files of one suffix type from files of another suffix 
type. Its default rule for building .0 files from .c files is to issue the com­
mand. 

cc -c name.c 

which creates name.o. 

To see how make works. assume you just edited sym.c to fix a bug. 
When you type "make". make reads make file and notices that cint is de­
pendent on a number of files. including sym.o. Because sym.o does not 
explicitly depend on any other files. make determines that sym.o must be 
dependent on sym. c. When it checks the file modified dates. make dis­
covers that sym.c is newer than sym.o. Since our makefile does not in­
clude an explicit rule for bringing sym.o up-to-date. it uses its default 
rule and issues the command: 

cc -c -DDEBUG sym.C 

Now make determines that cint is older than sym.o. so it issues the com­
mand. 

cc -0 cint expr.o lex.o sym.o main.o token_st.o\ 
stmt.o declare.o 

which creates cint out of the latest versions of all the objects. 

12.5 Debugging 
Not even the best. most experienced programmers write bug-free code 
on their first try. A large part of programming. therefore. consists of 
finding and fixing bugs. The original computer "bug" was a moth caught 
in the electromechanical switches of the Mark II computer and discov­
ered there by Lieutenant Grace Hopper in 1945. The term bug has come 
to mean any erroneous behavior of a computer system. Nowadays. most 
bugs are caused by problems in software. not hardware. The process of 
finding and fixing bugs is known as debugging. 

Once the development phase of a project is under way. the edit-compile­
debug cycle becomes the norm. Most products. if they become success­
ful. eventually fall into a maintenance mode where they spend most of 
their useful life. 



www.manaraa.com

398 Chapter 12 

There are three laws of debugging: 

1) All complex software has bugs. 

2) The bug is probably caused by the last thing you touched. 

3) If the bug isn't where you are looking, it's somewhere else. 

The first law reflects the insidious nature of algorithms to grow exponen­
tially more complex as they gain added functionality. The second law re­
flects the opposing natures of computers and human beings-computers 
require painful attention to detail; humans are prone to err. The third 
law is inspired by the human tendency to stick to first impressions. For 
instance, you may be convinced that your bug is caused by the second 
law, but after an exhaustive search you still can't find it. Obviously, you 
need to look elsewhere. Although this is obvious to the dispassionate 
reader, it is often not so clear to the frustrated programmer. 

Debugging is an art that requires patience and ingenuity, but most of all, 
experience. The first step to fixing a bug is to isolate the erroneous be­
havior. Frequently, news of a bug comes from a user in the form: "It 
doesn't work." This general comment needs to be pinpointed to some­
thing like: "After I type run, it prints the first variable and then hangs." 

The important point is that you, the programmer doing the debugging, 
must be able to reproduce the bug at your console. If at all practical, this 
means using exactly the same input as the person who reported the bug. 

When it isn't obvious from examination of the user input why a product 
fails, you should rely on internal product debug information. This is usu­
ally available through a command line option that is not divulged to the 
general public. Our C interpreter, for example, contains three such de­
bug options. If the answer still eludes you, an interactive debugger is the 
answer. 

12.5.1 Software Maintenance and Entropy 
Maintenance of physical objects, like bridges and cars, refers to periodic 
replacement of worn-out parts. This tendency of mechanisms to wear 
out and work less well over time is an example of a general principle 
known as entropy. Entropy embodies the third law of thermodynamics, 
which can be paraphrased: all systems tend to become less ordered over 
time. 

Though software does not "wear out" like physical objects, it is equally 
susceptible to the effects of entropy. Software products often suffer the 
effects of a fast employee turnover or rapid expansion. As new engineers 
join a project, they need to become familiar with the product before they 



www.manaraa.com

Software Engineering 399 

can make substantial contributions. It is not unusual for bugs to be cre­
ated by engineers who have only a partial understanding of the product. 
Obviously, this problem can be mitigated by readable code and good 
documentation. 

Another entropic phenomenon that affects software is the tendency to 
add too many bells and whistles to a product. As a software product be­
comes more popular, its user community grows, and so also grows the 
number of suggestions for new features. There is a great temptation to 
add as many of these features as possible, but you need to consider how 
the new features will affect the overall program. Adding new features 
usually means that the program will run slower and will require more sys­
tem resources. In addition, new features can make a product more diffi­
cult to learn, use, and maintain. You should carefully consider these po­
tential drawbacks before adding new features to a stable product. 

Bugs aside, the completeness or orderedness of a software product can 
only be measured relative to the environment in which it operates. That 
is, does it run on the right hardware, does it have sufficient speed and 
power, is it easy to use, is it cost-competitive? By itself, a software prod­
uct might be bug free, and if it were not touched, it could remain bug free 
till doomsday. But the environment in which it operates is constantly 
changing, and the product must change with it. Maintenance of software 
products, therefore, is a constant struggle to keep up with an ever-chang­
ing industry. 

12.5.2 Debuggers 
Debugging tools are available at various levels, from assembler to high­
level source language. Most compilers sold today come with a full debug­
ging system. Source-level debuggers are the easiest to use. They allow 
you to put breakpoints on source lines and set and examine local and 
global variables when program execution reaches a breakpoint. Some al­
low you to step through a program one source line at a time, examining 
variable values as you go. However, this mode of attack is often too slow 
to be truly useful. The art of debugging is knowing what is useful infor­
mation and what isn't. 



www.manaraa.com

400 Chapter 12 

12.6 Testing 
A product is only as good as its test system. In fact, the process of testing 
and validating software systems is a discipline in its own right. Through­
out development, testing is done to ensure that each module performs as 
expected. The tests themselves may consist of ANSI-sanctioned valida­
tion suites, customer benchmarks, commercial test suites, tests developed 
by the development team, and a set of tests that probe for the existence 
of prior bugs that are claimed to have been fixed. Commercially avail­
able suites consist of input data, and a convenient control and analysis 
system that automates the test and summarizes results. Such test systems 
may take days to complete. 

There are two major test phases of the complete product before it is 
ready to ship to users: alpha test and beta test. 

The alpha test consists of testing performed by the development team and 
others within the organization for the express purpose of turning up any 
bugs in the final product. Once a product has entered alpha test, the 
code for that version of the product should be frozen. The only changes 
to the software should be bug fixes. Source-code control systems are a 
big help in maintaining version integrity. 

The beta test refers to a phase of testing that allows select customers to 
tryout the new product before it is made available to the general public. 
These customers should be people who understand that in return for 
newer and better products, they are accepting a bit of risk that the prod­
uct still contains significant bugs. The beta-test phase begins when the 
alpha test is complete, or far enough along to guarantee a large measure 
of reliability. 

The point of a beta test is to make sure that the product will function 
properly in "real life. " For instance, most test systems only test that the 
system behaves properly when fed correct input. Proper diagnosis and 
treatment of erroneous input can be essential to a usable product. 

12.6.1 Test Engineering 
Most software engineering organizations have a group dedicated to testing 
that is responsible for final acceptance of products. This group creates, 
maintains, and runs test suites, and has the power to delay shipping a 
product if it decides the product is not dependable. 

Test engineering is a challenging part of software engineering. It is not 
enough to write tests that cover every aspect of a product. The tests must 
be sophisticated enough to pinpoint problem areas when a failure occurs. 
Though the tests themselves are not shipped with a product, the quality of 
the test system is directly reflected in the quality of the final product. 



www.manaraa.com

Software Engineering 401 

12.7 Performance Analysis 
Since the main thrust of a development effort is towards modularity and 
correctness, it is possible that execution speed may suffer. To some de­
gree, this is to be expected, although even in the design stages, you 
should be careful to choose efficient high-level algorithms. No amount 
of trickery can compensate for an algorithm that is fundamentally slow. 
However, it is much easier to pinpoint bottlenecks (places where the pro­
gram spends much of its time) after the program is working, than to pre­
dict in advance where the bottlenecks will lie. It is unwise, therefore, to 
devote much of the initial design to low-level efficiency. 

A common feature of C compilers is an option known as profiling. This 
refers to the ability to count each function call made, and keep track of 
the amount of time spent in each function. The program is compiled 
with the profiling option and run with some typical input. The profiler 
then generates a data file that contains the call frequency and duration. 
A profile display program reads the data file and prints out a formatted 
analysis. This analysis shows immediately the functions in which the pro­
gram spends most of its time. This allows you to focus your tuning efforts 
on the trouble spots. 

Some systems support a more fine-grained analysis that works across ar­
bitrary code segments. This allows you to pinpoint CPU-hungry lines 
within functions. 

Common bottlenecks in programs that use heap storage are mallacO and 
free O. If extensive use is made of malloc 0 and free 0, the internal list of 
free blocks can contain large amounts of fragmented sized data. Most 
programs only use a handful of different sized data types. It is often pos­
sible, therefore, to gain a significant increase in speed by writing a pro­
gram that keeps its own free list array, with a list for each commonly used 
type. 

12.8 Documentation 
Up to now, we have focused on internal documentation. Equally impor­
tant to the success of the project, however, is the documentation that 
goes to the end user. Typically, end-user documentation is written by 
one or more professional technical writers. A good technical writer com­
bines a rare talent for clear writing with a grasp of computer technology, 
and is indispensible in any software endeavor. 

The technical writer should become involved in the project at an early 
date and may actually help write the product and design specifications. It 
is in the interest of both the technical writer and the developers to pro­
duce specifications are well-written and accurate. The technical writer 



www.manaraa.com

402 Chapter 12 

uses them as base documents from which to write more polished end­
user documentation. 

If the technical writer cannot find the answer to a question in one the 
specifications, he or she has two options: 

1. Test the product itself, if it's available. 

2. Ask the developers for the information. 

Both approaches have advantages and disadvantages. The advantage of 
the first approach is that the writer actually tests the product. This testing 
may turn up unexpected behavior unknown to the developers, including 
bugs. Moreover, it ensures that the writer will be familar with the prod­
uct and will document exactly what the user will see. The disadvantage 
of this approach is that it is time-consuming. Also, a reliable version of 
the product may not be available until it's too late. 

The main advantage of the second approach is that it is fast. Also, by 
asking the developer for information, the writer implies that the informa­
tion is not available in the specs. This may be an oversight that the devel­
opers should address. There are two disadvantages to this approach. 
First, the developer may give the technical writer erroneous information. 
Second, time taken to answer questions is time not spent programming. 
Usually, these disadvantages go hand in hand since a busy programmer 
may give off-hand and incorrect answers just to mollify an inquisitive 
tech writer. 

One documentation technique that we have found effective is for the 
technical writer to write a rough draft of the manual(s), inserting notes 
and question marks where there is confusion. The developers can then 
review this draft at their leisure rather than being periodically interrupted 
with isolated questions. The more draft versions a document undergoes, 
the better the final version will be. 

An alternative strategy is for the programmer to write the initial draft and 
have the tech writer edit it. Our own experience has proven that this 
technique is effective only if the programmer is a talented writer and is 
motivated to write a high-quality initial draft. 

To produce quality documentation, a tech writer should make use of all 
the resources available-specifications, versions of the product itself, and 
developers. For their part, the developers must understand that the qual­
ity of the documentation will affect the ultimate success or failure of the 
product. Tech writers cannot perform their jobs without the developers' 
cooperation. 



www.manaraa.com

Software Engineering 403 

Exercises 
1. Find five bugs in the sample C interpreter, cint (listed in Appen­

dix F), and fix them. Be sure to include test programs that de­
tect the presence of the bug. 

2. Add the "op=" operators to exp.c in cint. 

3. Write a specification and project plan for one of the following 
projects: 

a) Add preprocessor directives to lex.c in cint. 

b) Give the list command an optional file name so that the list­
ing can be sent to the file. 

c) Add unsigned data types. 

d) Add switch statements and the ?: operator to cint. 

e) Add casts to cint. 

f) Add structures and unions to cint. 

g) Write a screen-oriented editor front-end to cint, so that you 
can edit the token stream directly. 

h) Create a breakpoint facility that allows you to stop at any 
source line and examine and set the values of local and 
global variables. 

4. Profile cint or some other program to which you have the source, 
identify the bottle necks, and suggest ways of speeding up the 
program. 

5. Write a specification for and develop a library of graphics calls 
that can draw lines, squares, triangles, and circles of arbitrary 
size. Be sure to use a consistent naming convention and argu­
ment placement. Use the library to make a pretty picture. 

6. Write a program to solve the three queens problem. (How do 
you put three queens on a chess board such that no piece threat­
ens another?) 

7. Implement the symbol table (modules sym.c and sym.h of cint) 
as a binary tree. 



www.manaraa.com

404 Chapter 12 

8. Implement the symbol table as a hash tree. 

9. Assuming that a binary tree holds a list of symbols arranged al­
phabetically (as in the examples on page 385 and 386), write a 
function that prints all of the symbols in alphabetic order. Hint: 
Use recursion. 

10. Write a function that balances an unbalanced binary tree. The 
function should accept one argument, which is a pointer to the 
top of the binary tree. How efficient is your algorithm? 

11. Write a program to solve the following problem, called the travel­
ing salesman problem. A salesman wants to travel to five cities in 
such an order that the total number of miles traveled is mini­
mized. Using the 5xS multidimensional array shown below, 
which represents distances between the five cities, write a pro­
gram that finds the shortest route. 

int distances [5] [5] = { 
/* NY */ { 0, 300, 150, 400, 50O}, 
/* Boston */ {30O, 0, 150, 700, 800 }, 
/* Hartford */ {15O, 150, 0, 500, 700 }, 
/* DC */ {40O, 700, 500, 0, 450 } , 
/* Cleveland */ {50O, 800, 700, 450, ° } } ; /* NY, Bos, Hart, DC, Cleve. */ 

12. If N represents the number of cities in the traveling salesman 
problem, how efficient is your algorithm in terms of operations 
per N? Note that there is no efficient solution for this problem. 
Problems such as these are known as NP-complete. 



www.manaraa.com

Appendix A 

The ANSI Runtime Library 

Until recently, each compiler manufacturer delivered its own unique li­
brary of runtime routines and there was little effort towards standardiza­
tion. This state of affairs wreaked havoc on programmers trying to write 
portable code. There was no guarantee that a program using library func­
tions from one compiler manufacturer would still run when ported to an­
other machine. With ratification of the ANSI Standard, this situation 
should improve. 

The task of deriving a single set of routines, however, was no simple mat­
ter. The ANSI Committee was faced with literally dozens of existing 
functions, many with the same names but with different effects. One of 
the committee's main goals was to break as little existing code as possible. 
The result was a somewhat larger and less consistent library than anyone 
really desired. Nevertheless, once you learn some of its subtleties and 
quirks, the ANSI C library becomes a remarkably powerful tool. 

The main source for the routines in the ANSI library is the UNIX operat­
ing system. Many of the functions supported by ANSI are exactly the 
same as those supported by System V and BSD4.2, while others are very 
similar. As of this writing, AT&T, in conjunction with the UNIX Stan­
dard IEEE Committee, appears committed to bringing its library into ac­
cord with the ANSI Standard. 



www.manaraa.com

406 Appendix A 

A.1 Function Names 
All library function names are reserved as external identifiers. There­
fore. you cannot define a name that matches a library name. even if you 
are defining a function that performs the same operation. Likewise. all 
identifiers beginning with an underscore are reserved for behind-the­
scenes macros. Appendix C provides a complete list of reserved names. 

A.2 Header Files 
In addition to the functions themselves. the C runtime library comes with 
a set of include files called header files. Every function is associated with 
one or more header files that must be included wherever the function is 
invoked. These files contain the declarations for any related functions. 
macros. or data types needed to execute a set of library functions. Table 
A-t lists the standard header files. Note that some of these header files 
may not be available with your compiler if it is not ANSI-conforming. 

The ANSI Standard guarantees that the header files are idempotent. This 
means that multiple inclusions of the same header file will not have ad­
verse effects and you can include header files in any order. 

In addition to the header files listed in Table A-t. there are three other 
header files that are not specifically associated with any functions: these 
files contain parameter values that describe the execution environment. 
See Appendix D for a list of the parameters defined in these files. 

<limits.h> 

<float.h> 

<stddef.h> 

Contains parameter values that describe 
the execution environment (see Appendix 
D). 

Defines a number of macros that describe 
the characteristics of floating-point objects 
in the environment (see Appendix D). 

This is a new header file that contains defi­
nitions of four macros: ptrdiff_t. size_t. 
NULL. and ermo. These macros are also 
defined in any header file declaring func­
tions that use them. 



www.manaraa.com

The ANSI Runtime Library 

Header File 

<assert.h> 

<ctype.h> 

<math.h> 

<1ocale.h> 

<setjmp.h> 

<signal.h> 

<stdarg.h> 

<stdio.h> 

<stdlib.h> 

<string.h> 

<time.h> 

Associated Functions 

Diagnostic functions (currently just the as­
sertO macro). 

Character testing and mapping functions. 

Double-precision mathematics functions. 

The setlocale 0 function, which enables 
you to set locale parameters. 

The setjmpO and longjmpO functions, 
which enable you to bypass the normal 
function call and return discipline. 

Functions that handle signals. 

Functions and macros for implementing 
functions that accept a variable number of 
arguments. 

I/O functions. 

General utility functions. 

String manipulation functions. 

Time manipulation functions. 

Table A-1. Header Files for the Runtime Library. 

A.3 Synopses 

407 

The form of each function and the header file it requires is provided in a 
format called a synopsis. The synopsis format is taken from UNIX docu­
mentation and has the following form: 

#include header_file 
function -prototype 

For example, the following is the synopsis for the function gets(), which 
reads a string from standard input: 

#include <stdio.h> 
char *gets(char *5); 



www.manaraa.com

408 Appendix A 

This tells you that you must include the header file <stdio.h>, and that 
getsO takes one argument that is a pointer to a char and returns a 
pointer to a char. To use gets 0 in a program, you would include the 
line, 

#include <stdio.h> 

in your source file. You do not need to declare getsO since any neces­
sary declarations are performed in the header file. The angle brackets 
enclosing the filename inform the compiler to search for the header file 
in a system-defined location. So long as your C compiler is installed as 
directed by the vendor, you should not need to worry about the realloca­
tion of the header files. 

It is also possible to explicitly declare a library function without referring 
to a header file. To declare getsO, for instance, you could write: 

extern char *gets( char * ); 

However, this can be a dangerous practice for a couple of reasons. First, 
the function you declare may refer to other functions or macros that are 
defined in the header file. If you don't include the header file, the func­
tion may not work. Secondly, the library function may have a macro im­
plementation that runs faster than the real function. By declaring it as a 
function, you force the system to use the function version, which makes 
your program less efficient. For these reasons, we recommend that you 
always include whatever header files are indicated in the synopsis. 

A.4 Functions vs. Macros 
As described in Chapter 9, it is often possible to implement a function 
more efficiently as a macro. Most C compiler developers take advantage 
of this capability by implementing many of the library functions as mac­
ros. However, since this introduces some potential side-effect problems, 
the ANSI Standard enforces some restrictions to protect you. First, the 
ANSI Standard ensures that in any macro implementation, an argument 
is expanded once and only once. This avoids the pitfalls associated with 
side-effect operators in the argument expression (see Box 10-6). Sec­
ondly, the ANSI Standard guarantees that there is an actual function for 
each library function listed. This enables you to take the address of any 
library function. (getcO and putc() are exceptions to both these rules.) 

In many cases, there exists both a function and a macro that perform the 
same operation. By default, the macro gets executed since it is usually 
faster. If you want to execute the function instead, you can explicitly 
#undef the macro. The following examples below illustrate this principle. 



www.manaraa.com

The ANSI Runtime Library 409 

Example 1 - Using the function as defined in the header file (it 
may be a macro or it may be a function) 

#include <stdio.h> 

s = gets(s); 

Example 2 - Forcing use of a function instead of a macro 

#include <stdio.h> 
#undef gets 

s = gets(s); 

A.S Error Handling 
Most library functions return a special value when an error occurs. The 
error value differs from routine to routine and is listed in the description 
of each individual function. The special macro, NULL, is often returned 
as an error value for functions that return pointers. It is an implementa­
tion-defined null pointer constant. 

In some cases, in addition to returning an error value, a function also as­
signs a special error code to a global variable called errno. errno is de­
clared in the <stddef.h> header file and has type volatile into For most 
implementations of C, each possible errno value is associated with an er­
ror message that you can output with the perror() function. You can also 
assign the error message to a string with the strerror() function. 



www.manaraa.com

410 Appendix A 

A.6 Diagnostics 
The C runtime library contains one header file and one macro for output­
ting diagnostics. In addition, there are several preprocessor symbols and 
commands that can be utilized to print diagnostic information (see Chap­
ter 11). The header file is called <assert.h>. It defines a macro called 
assert, and refers to another macro called NDEBUG. NDEBUG, how­
ever, is not defined by <assert.h>. In fact, if NDEBUG is defined when 
<assert.h> is included, then all subsequent calls to assertO will have no 
effect. Hence, NDEBUG provides a useful mechanism for turning off di­
agnostics, as illustrated in the example on the following page. 

#define NDEBUG 
#include <assert.h> 

/* calls to assert() will have no effect */ 

A.S.1 The assert() Function 
#include <assert.h> 
void assert( int expression ); 

According to the ANSI Standard, assertO must be implemented as a 
macro. The assertO macro tests the value of expression. If it is non­
zero, no action is taken, and zero is returned. If expression equals zero, 
assertO writes information about the program's current status to stderr, 
and then calls abort O. The diagnostic information contains the value of 
the expression, the current source file name, and the current line num­
ber. The latter two values are taken from the preprocessor symbols 
_FILE_ and _LINE_. The assertO macro is used most frequently 
to test the status of a function call. For instance, 

/* If fopen() returns zero, send status information 
* to stderr, and abort. 
*/ 
assert( fp = fopen( "file","r" ) ); 

Note, however, thatfopenO will not even be invoked if NDEBUG is de­
fined. 



www.manaraa.com

The ANSI Runtime Library 411 

A.7 Character Handling 
There are two groups of character handling functions, which are usually 
implemented as macros. The first group, called character testing func­
tions, checks to see whether the argument is a member of a particular set 
of characters. The second group, called case mapping functions, changes 
a letter from uppercase to lowercase, or vice versa. These functions are 
not ASCII-biased. They should work with any existing character code, 
including EBCDIC and European codes. Note, however, that there is 
some variation concerning how these functions operate, depending on 
what character set is being used. In these cases, a minimum operation is 
defined for programs operating in a C locale (see Section A-8 for more 
information about locales). 

A.7.1 Character Testing Functions 

All of the character testing functions have a similar format. They accept 
an int as the argument and return a non-zero value if the argument is a 
member of a specified set of characters. Otherwise they return zero. If 
the value of the argument cannot be represented in an unsigned char, 
the results are undefined. The generic synopsis is: 

#include <ctype.h> 
int func_name( int c ); 

Table A-2 lists all of the character handling functions, and the set of 
characters for which they test membership. 

A.7.2 Character Case-Mapping Functions 

There are two case-mapping functions, one that changes a letter from 
uppercase to lowercase and another that changes a letter from lowercase 
to uppercase. Both functions take an int argument, and return an int. If 
the argument is not relevant (Le., it is not a letter or it is already the case 
to which it is being converted), it is returned unchanged. The synopses 
for the two functions are: 

#include <ctype.h> 
int tolower( int C )j 

and 

#include <ctype.h> 
int toupper( int C ); 



www.manaraa.com

412 

Function 

isalnumO 

isalphaO 

iscntrlO 

isdigitO 

isgraphO 

islowerO 

isprintO 

ispunctO 

isspaceO 

isupperO 

isxdigitO 

Appendix A 

~entbership Set 

Alphabetic and digit characters (any char­
acter for which isalphaO or isdigitO is 
true). 

Alphabetic characters (any character for 
which isupperO or islowerO is true, or any 
implententation-defined set of characters 
for which iscntrlO, isdigit 0, ispunct 0, and 
isspaceO are false. In the C locale, isal­
phaO is true only if islowerO or isupperO 
is true). 

Control characters. 

Decimal digit characters. 

All printable characters except space char­
acters. 

Lowercase letters, or any implementation­
defined subset of characters for which 
iscntrlO, isdigit 0, ispunct 0, and isspace 0 
are false. 

All printing characters, including space. 

All printing characters except a space and 
characters for which isalnumO is true. 

A space (' '), form feed (,\f'), newline 
(,\n'), carriage return (,\r'), horizontal 
tab ('\t'), or vertical tab ('\v'). 

Uppercase letter, or any implementation­
defined subset of characters for which 
iscntrlO, isdigit 0, ispunct 0, and isspace 0 
are false. 

Hexadecimal digits. 

Table A-2. Character Testing Functions. 



www.manaraa.com

The ANSI Runtime Library 413 

A.a Setting Locale Parameters 
Though ANSI is a V. S. organization, the C Standards Committee took 
pains to make the C language as universal as possible. Among the prob­
lems it confronted were: 

• Different alphabets, and hence different character sets. 

• Different collating sequences in the character set (the numeric 
codes for alphabetic characters are not always ordered as they 
are in ASCII or EBCDIC). 

• Different methods of representing decimal points (a period in the 
V.S., but a comma in many European countries). 

• Different ways of displaying times and dates. 

A large part of the problem was solved by putting locale-defined behavior 
into library functions rather than the language itself. For example, the 
isalpha 0 function can return different results depending on what charac­
ter set is being used. This flexibility, however, raised another problem. 
If a library function has different interpretations based on locale, how 
can you force one particular interpretation? Also, how can you find out 
dynamically, while a program is running, which locale-specific behavior 
the program will exhibit? 

The ANSI Committee solved both of these problems by inventing a func­
tion called setloeale 0, which enables you to select a specific locale set­
ting, or to discover the current locale setting. By changing the locale set­
ting, you can immediately change the action of all relevant functions. 
Note that these changes occur at runtime, not at compile time. 

The header file associated with setloealeO is <loeale.h>. This file con­
tains definitions of five macros that enable you to select a particular part 
of the C language that you want to affect with the new locale setting: 

LC COLLATE 

LC TIME 

The entire language 

The streoll 0 function 

All of the character handling functions 

The decimal point character for the formatted 
I/O and string conversion functions 

The strftime 0 function 



www.manaraa.com

414 Appendix A 

A.8.1 The set/ocale () Function 
#include <locale.h> 
char *setlocale( int category, const char *locale ); 

The setlocale() function sets or queries locale-specific behavior for the 
part of the C language specified by category. category should be one of 
the five macros defined in locale.h. 

If locale is a null pointer, the function is interpreted as a query. It re­
turns a string that represents the current locale setting for the specified 
category. The only ANSI-defined locale is "C", which represents the 
minimal environment for C translation. Implementations are free to de­
fine other locale strings. 

If locale is not a null pointer, the function is interpreted as a request to 
change the locale setting for the specified category. If the request can be 
honored, setlocale 0 returns the locale argument. If the request cannot 
be honored, setlocaleO returns a null pointer. 

At program start up, the equivalent of 

set locale ( LC_ALL, "C" ); 

is executed. 



www.manaraa.com

The ANSI Runtime Library 415 

A.9 Mathematics 
All the math functions require inclusion of the header file <math.h>. 
This file contains definitions of three macros that are used for returning 
error conditions: 

EDOM The value of ermo after a domain error. 

ERANGE The value of ermo after a range error. 

HUGEVAL The value returned for a range error. 

There are two types of errors that can occur: domain errors and range er­
rors. A domain error occurs when an input argument to the function is 
outside the legal domain for argument values. For example, it is a do­
main error to pass a negative number to the sqrtO function. In this case, 
the function returns an implementation-defined value and sets ermo 
equal to the value of EDOM, which is an implementation-defined non­
zero integer. 

A range error occurs when the result of the function cannot be repre­
sented in a double. In this case, ermo receives the value of the macro 
ERANGE, which again is an implementation-defined, non-zero value. If 
a range error occurs because of an underflow (the value is too small), the 
function returns zero. If an overflow occurs, then the function returns 
the value of the macro HUGE_VAL. Generally, HUGE_VAL is the larg­
est value that can be stored in a double. 

The math functions are divided into several groups: 

• Trigonometric and Hyperbolic Functions 

• Exponential and Logarithmic Functions 

• Miscellaneous Math Functions 

All of the math functions operate on double values. However, the ANSI 
Committee plans to add equivalent functions for floats and long doubles 
some time in the future. The names of these new functions will be the 
same as the current names with an f or I appended. Therefore, you 
should consider these future names as reserved to avoid conflicts at a 
later date. 

The functions ecvtO, fcvtO, and gcvtO, which are available on many sys­
tems, were not included in the ANSI Standard because the same func­
tionality can be obtained through sprintfO. 



www.manaraa.com

416 Appendix A 

A.9.1 Trigonometric and Hyperbolic Functions 
With one exception (atan20), all of the trigonometric and hyperbolic 
functions take a double argument and return a double result. The gen­
eral synopsis is: 

#include <math.h> 
double func_name( double x ); 

These functions are described in Table A-3 (the atan20 function is 
listed separately). The trigonometric functions use radians, not degrees. 

A.9.1.1 The atan20 Function 
#include <math.h> 
double atan2( double y, double x ); 

The atan20 function returns the principal value of the arc tangent of y/x, 
using the signs of both arguments to determine the quadrant of the return 
value. Viewed in terms of a Cartesian coordinate system, the result is the 
angle between the positive x-axis and a line drawn from the origin 
through the point (x,y). The result is in radians and lies between -1T and 
1T. A domain error occurs if both arguments equal zero. 

A.9.2 Exponential and Logarithmic Functions 
The following library routines perform exponential and logarithmic func­
tions. Each of these functions returns a double. 

A.9.2.1 The expO Function 
#include <math.h> 
double exp( double x ); 

The expO function returns the exponential function of x. If the magni­
tude of x is too large, a range error occurs. 

A.9.2.2 The frexp 0 Function 
#include <math.h> 
double frexp( double value, int *exp ); 

The /rexpO function converts value into a fraction multiplied by a power 
of 2. The fractional part, which is between 0.5 and 1.0, is returned by 
the function and the exponential value is stored in the object pointed to 
byexp. If the original value of value is zero, then both value and the ob­
ject pointed to by exp are assigned the value zero. 



www.manaraa.com

The ANSI Runtime Library 

Function 

acosO 

asinO 

atanO 

cosO 

cosh 0 

sinO 

sinh 0 

tanO 

tanh 0 

Operation 

Returns the principal value of the arc co­
sine of x. The result lies in the range 0 
through p. A domain error occurs if x is 
less than -1 or greater than 1. 

Returns the principal value of the arc sine 
of x. The result is in the range -p/2 
through p/2. A domain error occurs if x is 
less than -1 or greater than 1. 

Returns the principal value of the arc tan­
gent of x. The result is in the range -p/2 
through p/2. 

Returns the cosine of x, where x is meas­
ured in radians. If x is very large, the re­
sult may not be meaningful. 

Returns the hyperbolic cosine of x. A 
range error occurs if the magnitude of x is 
too large. 

Returns the sine of x, where x is measured 
in radians. If x is very large, the result may 
not be meaningful. 

Returns the hyperbolic sine of x. A range 
error occurs if the magnitude of x is too 
large. 

Returns the tangent of x, measured in radi­
ans. If x is very large, the result may not 
be meaningful. 

Returns the hyperbolic tangent of x. A 
range error occurs if the magnitude of x is 
too large. 

Table A-3. Trigonometrlo and Hyperbolio Funotlons. 

417 



www.manaraa.com

418 Appendix A 

A.9.2.3 The Idexp 0 Function 
#include <math.h> 
double ldexp( double x, int exp ); 

The Idexp() function multiplies the value x by 2 to the power of exp and 
returns the result. If the resulting value is too large to fit in a double, a 
range error occurs. 

A.9.2.4 The log 1 00 Function 
#include <math.h> 
double loglO( double x ); 

The logJO() function returns the base-ten logarithm of x. If x is nega­
tive, a domain error occurs. If x is zero, a range error occurs. 

A.9.2.S The modfO Function 
#include <math.h> 
double modf( double value, double *iptr ); 

The modf() function divides value into its integral and fractional parts, 
each of which has the same sign as value. The fractional part is returned 
and the integral part is stored in the object pointed to by iptr. 

A.9.2.6 The powO Function 
#include <math.h> 
double pow( double x, double y ); 

The pow () function returns the value of x raised to the power of y. A do­
main error occurs if x is zero and y is less than or equal to zero, or if x is 
negative and y is not an integer. If x is zero and y is positive, the result is 
zero. If x is non-zero and y is zero, the result is approximately 1.0. If x 
is negative and y is an integer, then 

pow( x, y 

is computed as 

pow ( -x, y 

if Y is even, and as 

-pow ( -x, y ) 

if y is odd. If the result cannot be stored in a double, a range error oc­
curs. 



www.manaraa.com

The ANSI Runtime Library 419 

A.9.2.7 The sqrt() Function 
#include <math.h> 
double sqrt( double x ); 

The sqrtO function returns the non-negative square root of x. If x is 
negative. a domain error occurs. 

A.9.2.8 The ceil () Function 
#include <math.h> 
double ceil( double x ); 

The ceil 0 function returns the smallest integer not less than x. That is, it 
rounds towards positive infinity. 

A.9.2.9 The fabs() Function 
#include <math.h> 
double fabs( double x ); 

The fabs 0 function returns the absolute value of x. 

A.9.2.10 The floor() Function 
#include <math.h> 
double floor( double x ); 

The floor 0 function returns the largest integer not greater than x. That 
is, it rounds towards negative infinity. 

A.9.2.11 The fmod () Function 
#include <math.h> 
double fmod( double x, double y ); 

The fmod 0 function returns the floating-point remainder of x divided by 
y. The result has the same sign as x. (Note that technically fmod() re­
turns the remainder, not the modulus, since the sign agrees with x, not 
with y.) If the quotient of xjy cannot be represented, the behavior is 
undefined. If y is zero, the function returns x. 



www.manaraa.com

420 Appendix A 

A.10 Non-Local Jumps 
The C library contains two functions-setjmp() and longjmp()-that en­
able you to bypass the normal functional call and return procedures. 
This is particularly useful for dealing with unusual conditions in low-level 
functions. 

The header file for these functions is <setjmp.h>, which defines a data 
type called jmp _buf. jmp _buf is an array capable of holding the informa­
tion needed to restore a calling environment. 

setjmp() is called once to initialize a jmp_buf variable with the current 
values of the machine's state (e.g., the values of the stack pointer and 
frame pointer and the registers). When longjmp() is called, the machine 
is reset to the state contained in the jmp _buf array. This causes 
longjmp 0 to return to the place where setjmp () was last called with the 
same jmp_buf variable. 

A.10.1 The setjmp () Function 
#include <setjmp.h> 
int setjmp( jmp_buf env ); 

The setjmp 0 function saves the current environment in its jmp _buf argu­
ment for later use by the longjmp() function. When setjmp() returns 
from an initialization call, it returns zero. When setjmp() returns from a 
longjmpO call, it returns a non-zero value. 

In some implementations, a setjmp () call can only appear in a compari­
son expression, where the returned value is compared to an integral con­
stant expression. 

A.10.2 The longjmp() Function 
#include <setjmp.h> 
void longjmp( jmp_buf env, int val ); 

The longjmp() function restores the environment saved by the most re­
cent call to setjmpO with the same env argument. If there has been no 
such call, or if the function containing the call to setjmp() has terminated 
(i.e., through a return statement), the behavior is undefined. 

After a successful longjmp() call, all accessible objects have the same 
value they had immediately prior to the longjmp() call. The only excep­
tions are dynamic variables that are not volatile and have been changed 
between the calls to setjmp() and longjmp(). The values of these objects 
are indeterminate. 



www.manaraa.com

The ANSI Runtime Library 421 

If longjmp() is invoked from a nested signal handler (that is, from a func­
tion invoked as a result of a signal raised during the handling of another 
signal), the behavior is undefined. In all other interrupt and signal hap­
dling situations, longjmp() should execute correctly. 

A.10.3 Example 
setjmp() and longjmp() are typically used to recover from an error deep 
in the program structure by returning to an earlier state where the pro­
gram was functioning properly. In the following example, we initialize 
main_loop at the beginning of the program. Then, whenever error() is 
invoked, the program returns to this initial state. 

#inolude <setjmp.h> 

MainO 
{ 

} 

if (setjmp( main_loop » 
printf( "Restarting.\n" ); 

for (;;) 
{ 

printf( "oint> H); 

/* loop body */ 

} 

error ( s ) 
char *s; 
{ 

} 

printf(" Error %s\n", s ); 
longjmp( main_loop ); 

Note that the "Restarting" line is not printed the first time setjmp() is 
called because setjmp() returns zero when it is explicitly invoked. When 
setjmp() returns via a longjmp() call, however, it returns a non-zero 
value. 



www.manaraa.com

422 Appendix A 

A.11 Signal Handling 
The C runtime library contains two functions for handling various condi­
tions that may arise during program execution. These functions are a 
subset of those available in the UNIX library. Both functions make use 
of a number of macros declared in the header file <signal.h>. The mac­
ros and their meanings are listed in Table A-4. There is no guarantee, 
however, that an implementation will use any of these signals (except as 
the result of explicit calls to raise ()). In addition to the listed names, the 
ANSI Committee has also reserved all names that begin with SIG for pos­
sible future use. 

A.11.1 The signal () Function 
#include <signal.h> 
void ( *signal (int sig, void (*func) (int») ( int ); 

The Junc argument to signal () selects one of three methods for subse­
quent handling of signal number sig. If the argument is SIG_DFL, then 
the signal is handled in the default manner. If the argument is SIGJGN, 
the signal will be ignored. Otherwise, Junc should point to a function that 
is invoked when the signal occurs. 

Even if Junc points to a signal-handling function, the system will still exe­
cute the equivalent of 

signal ( sig, SIG_DFL ); 

before invoking: 

(*func) ( sig ); 

The function Junc may terminate in several ways, including calls to 
abort (), exit (), or longjmp 0 . If it returns through a return statement, 
and the return value is SIGFPE or any other implementation-defined 
value that corresponds to an exception, the behavior is undefined. Oth­
erwise, the program resumes execution at the point it was interrupted. If 
the requested change can be honored, signal () returns the value of Junc. 
Otherwise, it returns SIG_ERR and sets errno to indicate an error. 

Since the functions in the C runtime library are not guaranteed to be 
re-entrant, they may not be used reliably with a signal handler that re­
turns. 



www.manaraa.com

The ANSI Runtime Library 

Macro 

SIGjGN 

SIGABRT 

SIGFPE 

SIGILL 

SIGINT 

SIGSEGV 

SIGTERM 

Meaning 

Expands to a constant expression of type 
"pointer to function returning void". It is used 
as an argument to the signalO function, in 
place of a function addresss, to specify that a 
given signal should be ignored. 

Same as SIGjGN, except that it specifies that 
the signal is to be handled in an implementa­
tion-defined manner. 

Same as SIGjGN except that it specifies that 
the call to signalO is erroneous. 

Abort Signal - Expands to a positive integral 
constant expression that is the signal number 
corresponding to an abnormal termination, 
such as that indicated by the abortO function. 

Floating-Point Exception Signal - Expands to 
a positive integral constant expression that is 
the signal number corresponding to an errone­
ous arithmetic operation, such as zero divide, 
or an operation resulting in overflow. 

Illegal Instruction Signal - Expands to a posi­
tive integral constant expression that is the sig­
nal number corresponding to detection of an 
invalid function image. 

Interrupt Signal - Expands to a positive inte­
gral constant expression that is the signal num­
ber corresponding to receipt of an interactive 
attention signal. 

Segment Violation Signal - Expands to a posi­
tive integral constant expression that is the sig­
nal number corresponding to an invalid access 
to storage. 

Termination Signal - Expands to a positive in­
tegral constant expression that is the signal 
number corresponding to a termination request 
sent to the program. 

Table A-4. Signal Handling Macros. 

423 



www.manaraa.com

424 

At program start up, the equivalent of, 

signal( sig, SIG_IGN ) 

Appendix A 

may be executed for some signals in an implementation-defined manner. 

For all other signals the equivalent of, 

signal ( sig, SIG_DFL ); 

is executed. 

A.11.2 The raise () Function 
#include <signal.h> 
int raise( int sig )j 

The raise 0 function sends the signal sig to the executing program. If 
successful, raiseO returns zerOj if it is unsuccessful, it returns a non-zero 
value. 



www.manaraa.com

The ANSI Runtime Library 425 

A.12 Variable Argument Lists 
The C Library contains several tools for writing functions that can accept 
a variable number of arguments in a portable fashion. Without using 
these tools, you need to know the stack implementation of a particular 
compiler to write a variable argument function. The macros and function 
discussed in this section enable you to avoid the compiler internals. 

To declare a function capable of accepting a variable number of argu­
ments, use the " ... " prototype syntax. For example, the following de­
fines a functionf1 0 that will always be passed at least two arguments, but 
might be passed more. 

void fl( argl, arg2, ... ) 
int argl, arg2; 
{ 

Within f1 0, you would use the variable argument macros and functions 
to process all of the arguments to f1 O. Wherever f1 0 is invoked, there 
must be a function allusion of the form: 

void f1 ( int, int, ... ); 

The <stdarg.h> file contains definitions of two macros, one function, and 
one data type. The macros are va_start, va_arg, the function is va_end, 
and the type is va_list. va_list defines an array type suitable for holding 
information needed by va_arg and va_macro. In the following discus­
sion, the name of the array with this type is ap. 

A.12.1 The va start Macro 
#include <stdarg.h> 
void va_start ( va_list ap, parmN ) ; 

The va_start macro initializes the array ap for subsequent use by va_arg 
and va_end. It should be invoked before any arguments are processed. 
The parmN argument should be the name of the right-most argument be­
fore the three dots. Continuing our example of f 1 0, the va_start invoca­
tion would be: 

va_start ( ap, arg2 ); 



www.manaraa.com

426 Appendix A 

A.12.2 The va_arg Macro 
#include <stdarg.h> 
type va_arg ( va_list ap, type); 

The va_arg macro expands to an expression that has the type and value 
of the next argument. It should be invoked once for each argument. 
The argument ap should be the same argument initialized by the va_start 
macro. The parameter type should be the type of the argument (after de­
fault conversions to int, unsigned int, or double). For example, if all 
the arguments to /10 are integers, you would write: 

va_arg( ap, int ) 

to get the value of each argument. If the type specified in va_arg does 
not match the actual argument type, the behavior is undefined. 

A.12.3 The va_end () Function 
#include <stdarg.h> 
void va_end( va_list ap ); 

The va_endO function should be invoked after all of the arguments have 
been processed to facilitate a normal return from the function. If it is not 
invoked, the behavior is undefined. 

A.12.4 Example 
The following function accepts from 1 to 20 integer arguments, which it 
processes and stores in elements of the array args [J. The first argument 
specifies the total number of arguments in the call. 

#include <stdarg.h> 
#define MAX_ARGS 20 

void f1( arg_num, 
int arg_num; 
{ 

} 

va_list ap; 
int args[MAX_ARGS]; 
int array_element = 1; 

va_start( ap, arg_num ); 
while (arg_num--) 

arg[array_element++] va_arg( ap, int ); 
va_end ( ap ); 



www.manaraa.com

The ANSI Runtime Library 427 

A.13 I/O Functions 
This section describes each standard I/O function in detail. See Chapter 
11 for more general information about how to perform I/O using the C li­
brary. 

A.13.1 The clearerr() Function 
#include <stdio.h> 
void clearerr( FILE *stream ); 

The c1earerrO function clears the end-of-file and error indicators associ­
ated with the specified stream. Use ferrorO and feofO to see whether 
these indicators are set. The only other time these indicators are cleared 
is when the file is opened or when a rewindO function is executed. The 
c[earerr'() function does not return a value. 

A.13.2 The fclose () Function 
#include <stdio.h> 
int fflush( FILE *stream ); 

The fc10se 0 function closes the file associated with the specified stream 
and disassociates the stream from the file. Before closing the file, 
fc1oseO flushes the associated buffers. If the buffers had been automati­
cally allocated, they are deallocated. Whenever the exitO function is in­
voked, it calls fc1oseO for any open streams. 

The fc1oseO function returns zero if it successfully closes the stream, or 
non-zero if an error occurs. If the stream is already closed, fcloseO re­
turns non-zero. 

On some operating systems, it is impossible to create a file without writing 
something to it. Programs that rely on a file being created, therefore, 
should write something to the associated stream before closing it. 

A.13.3 The feof() Function 
#include <stdio.h> 
int feof( FILE *stream ); 

The feofO function tests the end-of-file indicator for the specified 
stream to see whether an end-of-file was encountered in a previous read 
or write operation. If the indicator is set, feofO returns a non-zero 
value; otherwise it returns zero. Note that feofO does not reset the error 
indicator so that repeated calls to feofO will report the same condition 
over and over. To reset the error indicator, use clearerrO. 



www.manaraa.com

428 Appendix A 

A.13.4 The ferror() Function 
#include <stdio.h> 
int ferror( FILE *stream ); 

The ferrorO function tests the error indicator for the specified file to see 
whether an error has occurred on a previous read or write operation. If 
the indicator is set, ferrorO returns a non-zero value; otherwise it returns 
zero. Note that ferrorO does not reset the error indicator so that re­
peated calls toferrorO will report the same error over and over. To reset 
the error indicator, use clearerrO. 

A.13.S The fflush () Function 
#include <stdio.h> 
int fflush( FILE *stream ); 

The f/lush 0 function empties the buffer associated with the specified 
stream causing any data in the buffer to be written to the destination file 
or device. The stream remains open. If the call is successful, fflushO re­
turns zero; otherwise it returns a non-zero value. 

A.13.6 The fgetc() Function 
#include <s~dio.h> 
int fgetc( FILE *stream ); 

ThefgetcO function fetches the next character from the specified stream, 
returns the value after converting it to an int, and advances the associ­
ated file position indicator. Successive calls to fgetc 0 return successive 
characters from the stream. If an end-of-file is encountered, or if an er­
ror occurs, fgetcO returns EOF. Use feofO or ferrorO to determine 
whether an error or end-of-file occurred. 

A.13.7 The fgetpos() Function 
#include <stdio.h> 
int fgetpos( FILE *stream, fpos_t *pos ); 

The fgetpos 0 function stores the current file position indicator in the ob­
ject pointed to by pos. It is similar to ftell 0, except that the file position 
indicator value is stored in an object of type fpos _t, rather than being re­
turned as a long into The value stored contains implementation-defined 
information that can only be used by fsetposO to reposition the file posi­
tion indicator to its position at the time of the fgetposO call. See the de­
scription of fsetpos() for more information. 



www.manaraa.com

The ANSI Runtime Library 429 

If successful, fgetposO returns zero. On a failure, fgetposO returns a 
non-zero value and sets errno to an implementation-defined value. 

A.13.8 The fgetsO Function 
#include <stdio.h> 
char *fgets( char *s, int n, FILE *stream ); 

The fgetsO function reads characters from the specified stream and as­
signs them to the array identified by s. The stream must be open with 
read access. Characters are read until a newline or end-of-file is en­
countered, or until n-l chll.racters have been fetched, whichever comes 
first. Unlike the getsO function, fgetsO includes the terminating newline 
in the array. fgetsO then appends a null character after the last character 
assigned, so that the maximum number of array elements used is n. 

If successful, fgetsO returns the pointer s. If an end-of-file is encoun­
tered before any characters are read, fgetsO leaves the array untouched 
and returns a null pointer. If an error occurs, a null pointer is returned, 
but the contents of the array are unpredictable. 

A.13.9 The fopen 0 Function 
#include <stdio.h> 
FILE *fopen( const char *filename, const char *mode); 

The fopen 0 function opens a file identified by filename, and associates a 
stream with the file. The second argument is a pointer to a character 
string that identifies the file access type. Table A-5 shows the legal val­
ues for the argument mode. 

Many of these access types were invented by the ANSI Committee, so 
they may not be implemented on older compilers. The traditional access 
types, documented in K&R, are "r", "w", and "a". The corresponding 
update modes, "r+", "w+", and "a+", have also been in existence for 
some time. The types for accessing binary data (those with a b in them) 
are new and reflect ANSI's efforts to develop a consistent library of func­
tions. Formerly, I/O to binary files was performed through a set of 
UNIX-derived functions that paralleled the standard text I/O functions. 
Now they are merged into one group. 

Unfortunately, in its efforts not to break any existing code, the ANSI 
Committee was forced to make the semantics offopenO somewhat vague. 
It is implementation defined, for example, whether the update modes, 
"r+", "w+", and "a+", open and create text files or binary files. Also, 
"ab", "ab+", and "a+b" may initially position the file position indicator 
beyond the last data written, due to null padding. Finally, the Standard 



www.manaraa.com

430 Appendix A 

leaves it open for compilers to support additional access modes beyond 
the ones listed here. 

Mode Meaning 

"r" Open an existing text file for reading. 

"w" Create a new text file for writing, or trun­
cate an existing file. 

"a" Open a text file in append mode; writing to 
the file occurs at end-of-file marker. 

"rb" Open a binary file for reading. 

"wb" Create a new binary file for writing, or 
truncate an existing binary file. 

"ab" Open or create a binary file in append 
mode; writing occurs at end-of-file 
marker. 

"r+" Open an existing text file for reading and 
writing. 

"w+" Create a new text file for reading and writ­
ing, or truncate an existing file. 

"a+" Open an exisitng file or create a new one in 
append mode; writing occurs at end-of­
file. 

"r+b" or "rb+" Open a binary file for reading and writing. 

"w+b" or "wb+" Create a new binary file for writing, or 
truncate an existing, binary file. 

"a+b" or "ab+" Open an existing binary file, or create a 
new one, for reading and writing in append 
mode; writing occurs at end-of-file. 

Table A-5. The fopenO Modes. 

Opening a file with one of the append modes ("a", "a+", "ab", or 
"a+b") forces all subsequent writes to occur at the current end-of-file, 
regardless of previous calls to fseek (). After each write operation, the file 



www.manaraa.com

The ANSI Runtime Library 431 

position indicator is repositioned to the end of the file and the buffer is 
flushed. 

Opening a file in read mode (where r is the first character of the mode 
argument) fails if the file does not exist or cannot be read. 

One peculiarity of the update modes (which stems from the fact that I/O 
is buffered) is that you cannot write to a file and then read from it, or 
vice versa, without an intervening fseek 0, fsetposO, rewindO, or fflushO 
call (unless the read or write operation encounters an end-of-file). 

The fopen 0 function returns a pointer to a structure of type FILE. This 
pointer, called a file pointer, is then used to access the file in subsequent 
I/O operations. If an error occurs while opening the file, fopen 0 returns 
a null pointer. 

A.13.10 The fprintfO Function 
#include <stdio.h> 
int fprintf( FILE *stream, const char *format, ... ); 

The fprintfO function enables you to send formatted output to a file. 
This function is equivalent to printfO, except that it takes one additional 
argument, stream, which lets you specify a stream (the printfO function 
automatically writes to the standard output stream stdout). See the de­
scription of printfO for more information. 

A.13.11 The fpute 0 Function 
#include <stdio.h> 
int fputc( int c f FILE *stream ); 

The fputeO function writes a single character to the specified stream and 
advances the associated file position indicator. Note that the character is 
passed as an int, butfputeO converts it to an unsigned char before out­
putting it. fputeO returns EOF if an error occurs; otherwise it returns the 
character written. 

The ANSI Standard guarantees thatfputeO will not be implemented as a 
macro. puteO is an equivalent function that may be implemented as a 
macro. See Chapter 11 for more information about puteO and fputeO. 



www.manaraa.com

432 Appendix A 

A.13.12 The tputs() Function 
#include <stdio.h> 
int fputs( const char *s, FILE *stream ) 

The jputsO function writes the array identified by the pointer s to the 
specified stream. Characters from the array are written up to, but not in­
cluding, the terminating null character. Note thatjputsO does not insert 
a newline as putsO does. Also note that the string must have a terminat­
ing null character or jputsO will output successive bytes from memory in­
definitely. If successful, jputsO returns zero; otherwise it returns a non­
zero value. 

A.13.13 The tread () Function 
#include <stdio.h> 
int fread( void *ptr, size_t size, int nelem, 

FILE *stream ); 

The jread 0 function is used to read a block of binary or text data into an 
array. The array is identified by ptr. The argument nelem specifies the 
number of elements to read, and size specifies the size of each element in 
bytes. Normally, the size is computed by using the sizeof operator. For 
example, 

fread( arr, sizeof(*arr), 100, fp ); 

reads 100 elements from the stream identified by jp and stores the results 
in an array called arr. It is your responsibility to ensure that the array is 
large enough to hold the data. 

The jread 0 function concludes when it reads in the specified number of 
bytes, it encounters an end-of-file, or a read error occurs. In all three 
cases, jreadO returns the number of bytes read. If the returned value is 
less than the number of bytes specified in the call, you must use jerrorO 
or jeojO to determine why jread 0 ended prematurely. After a jread 0 
call, the file position indicator is positioned just after the last byte read. 
You can reposition it with an JseekO or rewindO call. 

A.13.14 The treopen () Function 
#include <stdio.h> 
FILE *freopen(const char *filename, const char *mode, 

FILE *stream )j 

The jreopen 0 function is used to associate an existing stream with a dif­
ferent file. Normally it is used to redirect the standard streams, stdin, 



www.manaraa.com

The ANSI Runtime Library 433 

stdout, and stderr. First, freopenO closes the file associated with the 
stream, then it opens the file identified by filename, and associates the 
stream to it. The mode argument serves the same role as in an fopen 0 
function. If freopenO encounters an error, it returns a null pointer; oth­
erwise it returns the value of the file pointer (the third argument). 

A.13.15 The fscanf() Function 
#include <stdio.h> 
int fscanf( FILE *stream, const char * format , ... ); 

The fscanfO function enables you to read formatted data into variables. 
It is equivalent to scanfO, except that it takes one additional argument, 
stream, which lets you specify an input stream (the scanfO function 
automatically reads from stdin). See the description of scanfO for more 
information. 

A.13.16 The fsetpos() Function 
#include <stdio.h> 
int fsetpos( FILE *stream, const fpos_t *pos ); 

The fsetposO function is designed to be used.in conjunction with fget­
pos 0 to move the file position indicator to the spot specified by the ob­
ject pointed to by pos. pos must be a value returned by an earlier call to 
fgetposO. The fgetposO and fsetposO functions should be used instead 
offtellO andfseekO when the file position indicator value is too large to 
fit in a long into The fpos _t data type should be defined by each imple­
mentation to be large enough to hold the largest possible file position in­
dicator value. 

ThefsetposO function clears the end-of-file flag for the specified stream 
and undoes the effects of any previous calls to ungetc 0 on the same 
stream. After an fsetposO call, the next operation on the stream can be 
either input or output. 

If successful, fsetposO returns zero. If it fails, fsetpos() returns a non­
zero value and sets errno to an implementation-defined, non-zero value. 

A.13.17 The fseek () Function 
#include <stdio.h> 
int fseek( FILE *stream, long offset, int ptrname ); 

The fseekO function enables you to move the file position indicator in or­
der to perform random access on a file. The offset refers to the number 



www.manaraa.com

434 Appendix A 

of bytes from a fixed position specified by ptrname. ptrname can have 
one of three values represented by macros defined in <stdio.h>: 

Offset from the beginning of the file. 

Offset from the current value of the file posi­
tion indicator. 

Offset from the end of the file. 

Note that the offset can be negative. However, if you attempt to move 
the file position indicator before the beginning of the file, the results are 
unpredictable. 

The fseekO function has somewhat different semantics depending on 
whether the stream is open in binary or text mode. For binary streams, 
the name SEEK_END may not have meaning. For text streams, ptrname 
must be SEEK_SET and the offset must be either zero or a value re­
turned by a previous call to ftellO. 

The fseekO function undoes the effects of an ungetcO function. It also 
resets the end-of-file flag. fseekO returns zero if it is successful; if un­
successful, it returns a non-zero value. 

A.13.18 The !tell () Function 

#include <stdio.h> 
long ftell( FILE *stream ); 

The ftellO function returns the current value of the file position indica­
tor. For binary streams, this is the number of bytes from the beginning of 
the file. For text streams, ftellO returns an implementation-defined 
value that is suitable for use as an offset value in anfseek() function. Us­
ing the value in an fseek 0 call repositions the file position indicator to its 
position at the time of the ftellO call. 

The ftell() function can fail for at least two reasons: 

• The stream is associated with a terminal, or other file type, for 
which the concept of a file position indicator is meaningless. 

• The current value of the file position indicator cannot be repre­
sented in a long int (see the description of fsetpos()). 

If either of these failures occurs, ftellO returns -lL and sets errno to an 
implementation-defined, non-zero value. 



www.manaraa.com

The ANSI Runtime Library 435 

A.13.19 The fwrite 0 Function 
#include <stdio.h> 
int fwrite( const void *ptr, size_t size, 

size_t nmemb, FILE *stream ); 

The fwriteO function writes the array pointed to by ptr to the specified 
stream. It writes nmemb elements, where each element is size bytes long. 
Normally, size is computed by using the sizeof operator. For example, 

fwrite( arr, sizeof(*arr), 100, s ); 

writes 100 elements from array arr to stream s. Note that fwriteO con­
tinues fetching elements from the array until nelem elements have been 
read, even if this means going past the end of the array. It is your re­
sponsibility to ensure that the size of the array is at least as long as nelem 
times size. After the fwrite 0 call has completed, the file position indica­
tor is positioned just after the last character written. fwriteO does not 
modify the array in any way. 

fwriteO returns the number of elements written. Assuming no error oc­
curs, this will be the same as nmemb. 

A.13.20 The gete 0 Function 
#include <stdio.h> 
int getc( FILE *stream ); 

The getcO function reads the next character from the specified stream 
and returns it as an into getcO is equivalent to fgetc() except that it may 
be implemented as a macro instead of a function. If the next character 
in the stream is an end-of-file, or if an error occurs during the read op­
eration, getc() returns EOF. Useferror() or feof() to determine whether 
an end-of-file or error occurred. 

A.13.21 The geteharO Function 
#include <stdio.h> 
int getchar( void ); 

The getchar() function is equivalent to 

getc( stdin ) 

which is, in fact, how it is implemented by most compilers. It returns the 
next character from the standard input stream, or EOF if an end-of-file 
or error occurs. Use ferror() or feof() to determine whether an error or 
end-of-file occurred. 



www.manaraa.com

436 

A.13.22 The gets() Function 
#include <stdio.h> 
char *gets( char *s ); 

Appendix A 

The getsO function reads characters from the standard input stream 
(stdin) and assigns them to the character array identified by s. Charac­
ters are read and assigned until a newline or end-of-file is encountered. 
getsO is similar to, 

fgets( s, n , stdin ) 

where n is a large number. Note, however, that unlike fgetsO, getsO 
does not allow you to specify a maximum number of characters to read. 
getsO and fgetsO also differ in the way they handle newlines. If getsO 
ends by reading a newline, it absorbs the newline (i.e. positions the file 
position indicator after the newline), but does not assign the newline to 
the array. In contrast, fgetsO includes the newline in the array. Both 
getsO and fgetsO append a null character after the last character as­
signed to the array. 

If an end-of-file is encountered before any characters are read, getsO 
returns a null pointer and leaves the array untouched. If an error occurs 
during the read operation, a null pointer is returned and the contents of 
the array are unpredictable. Otherwise, if getsO concludes successfully, 
it returns s. 

A.13.23 The perror() Function 
#include <stdio.h> 
char *perror( const char *s ); 

The perrorO function returns an error message corresponding to the 
value of ermo. If s is not a null pointer, perrorO writes the string pointed 
to by s to stderr, then writes a colon, and then the error message that 
matches the current value of ermo. If s is a null pointer, perrorO returns 
a pointer to the error message string, but performs no output. Note that 
perrorO does not reset ermo, so you should explicitly reset ermo to zero 
after each perrorO call. 

A.13.24 The printf() Function 
#include <stdio.h> 
int printf( const char *format, ... ); 

The printfO function writes formatted data to the standard output stream 
(stdout). The first argument is a character string that may contain text 



www.manaraa.com

The ANSI Runtime Library 437 

and format control expressions called conversion specifiers. The remain­
ing arguments represent the actual data to be written. For each data ar­
gument, there should be one, and only one, conversion specifier in the 
format string which defines how the data is to be output. Con\.'ersion 
specifiers and arguments are associated in the order in which they occur. 
If there are more data arguments than conversion specifiers, the remain­
ing data expressions are evaluated and then ignored. If there are more 
format specifiers than data arguments. the behavior is implementation­
defined. 

The printfO function is closely related to the fprintfO, sprintfO. 
vfprintfO, and vprintfO functions. They all obey the same formatting 
rules. The only difference is that printfO always writes to stdin, whereas 
fprintfO and sprintfO allow you to specify an output stream or internal 
buffer, respectively. vprintf() and vfprintf() are identical to printf() and 
fprintfO except that the argument list is replaced by a predeclared argu­
ment array. All of these functions return the number of data arguments 
written, or a negative number if an error occurs. 

Each conversion specifier starts with a percent sign (%) and is followed 
by optional format modifiers and a conversion character. The conver­
sion character specifies the type of data (integer, floating-point, or char­
acter). The corresponding data argument must match this type. The for­
mat modifiers control such things as field width, left and right justifica­
tion, and the padding character. The following example shows a simple 
printfO call. 

int j = 5; 
printf( "The value of j is: %d\nThe value of j\ 

squared is: %6d" , j, j*j ); 

The output is: 

The value of j is: 5 
The value of j squared is: 25 

Note that there is no explicit separator between text and conversion 
specifiers. The printfO function knows it has reached the end of a con­
version specifier when it reads a conversion character. In the example, 
the conversion character is d, which directs printfO to write an integer in 
decimal format. The conversion specifier %d is associated with argument 
j, and %6d is associated with rj. The 6 following the percent sign is a 
field width. Note in the output that the value is right-justified by default 
and padded with spaces on the left. 

The legal conversion characters are shown in Table A-6. 



www.manaraa.com

438 

Conversion 
Character 

d, i, 0, u, x, X 

f 

e, E 

Appendix A 

Effect 

Used to format integer output. d and i 
output the data item in decimal form; 0 

prints the data in octal form; u prints the 
unsigned value of the data item; x and X 
print the value in hexadecimal format. x 
uses the lowercase letters abcdef, while X 
uses ABCDEF. These formats output as 
many digits as are required to represent the 
number. Just before one of these conver­
sion characters, you may enter an h, I or 
L. The h signifies that the corresponding 
data item is a short int or unsigned short 
int, and the I signifies that the data item is 
a long int or unsigned long into 

Prints floating-point values in decimal no­
tation (i. e., 35.734). The precision desig­
nates the number of digits to appear after 
the decimal point. The default precision is 
6. If the precision equals zero, the decimal 
point is not printed. So long as there is a 
decimal point, however, there must be at 
least one digit to the left of it, even if the 
value is less than one (i.e., 0.3411). 

Outputs a floating-point value using scien­
tific notation (i.e., 3.67e+OB). There is al­
ways one digit to the left of the decimal 
point. The number of digits to the right of 
the decimal point is determined by the pre­
cision. The default precision is 6. If the 
precision is zero, the decimal point is not 
printed. The ~xponent value contains at 
least two digits, and as many digits thereaf­
ter as are needed to represent the datum. 
The letter separating the decimal value 
from the exponent is either e or E depend­
ing on which conversion character you use. 

Table A-B. printfO Conversion Characters. (continued on next page) 



www.manaraa.com

The ANSI Runtime Library 

Conversion 
Character 

g, G 

c 

s 

p 

n 

% 

Effect 

Uses either f or e (E if G is specified), de­
pending on the value of the datum. If the 
value would require an exponent less than 
-4 or greater than the precision, then e (or 
E) is used. Otherwise f is used. The preci­
sion specifier has the same effect it has for 
the f, e, and E conversions. Trailing zeros 
are removed from the result, and a decimal 
point is printed only if it is followed by a 
digit. 

Prints a character. Since the data argu­
ment is passed as an int, printf() prints the 
least significant byte. 

Prints a string of characters. The data ar­
gument should be a pointer to a null-ter­
minated array. For this conversion format, 
the precision is interpreted as the maxi­
mum number of characters to output. Any 
additional characters in the string are ig­
nored. If you do not specify a precision, 
all characters up to, but not including, the 
terminating null character are printed. 

The corresponding data argument should 
be a pointer to an object of type void. The 
value of the pointer is converted into a se­
quence of characters in an implementa­
tion-defined manner. 

Records the number of data items written 
so far. The corresponding data argument 
should be a pointer to an into printf() fills 
the int with the number of objects printed 
so far. 

The sequence %% outputs a percent sign. 

Table A-6. printfO Conversion Characters. 
(continued from preceding page) 

439 



www.manaraa.com

440 Appendix A 

The following program illustrates the default format for each conversion 
character. The next sections describe how to change the default by 
specifying a minimum field width, a precision, left justification, and zero 
as the pad character. 

main () 
{ 

printf( "%%d\t%%u\t\t\t%%o\t%%x\n" ); 

} 

printf( "%d\t%u\t%o\t%x\n\n", -25, -25, 25, 25 ); 

printf( "%%c\t%%s\n" ); 
printf ( "%c\t%s\n\n", 'A', "String" ); 

printf( "%%f\t\t\t%%e\t\t\t\t%%g\n" ); 
printf( "%f\t%e\t%g\n", 234.5678, 234.5678, 

234.5678 ); 
exit ( 0 ); 

The output is: 

%d %u 
4294967271 

%0 
31 

%x 
19 -25 

%c 
A 

%s 
String 

%f 
234.567800 

%e 
0.234568e+03 

%g 
234.568 

Flag Characters - There are a number of optional format modifiers that 
may come before the conversion character. The first, called a flag char­
acter, can be any of the characters shown in Table A-7. 



www.manaraa.com

The ANSI Runtime Library 

I Flag I 
Character 

+ 

space 

# 

Meaning 

Specifies left justification. 

Causes all numeric data to be prefixed with 
a plus or minus sign. The default, which 
this character overrides, is to print a minus 
sign for negative numbers, but no plus sign 
for positive numbers. 

Causes negative numbers to be prefixed 
with a minus sign, and positive numbers to 
be prefixed with a space. (The default is 
no space for positive numbers.) 

This modifier has various meanings de­
pending on what conversion character is 
specified. For c, d, i, s, and u, this flag 
has no effect. For 0 conversions, the # 
flag causes the value to be prefixed with a 
zero (the precision is widened if neces­
sary). For x and X conversions, the value 
is prefixed with Ox or OX. For e, E, C, g, 
and G conversions, the # causes the result 
to contain a decimal point, even if the pre­
cision is zero. For g and G conversions, 
trailing zeros will not be removed from the 
result, as they are normally. 

Table A-7. printfO Flag Characters. 

441 

The following program shows the effects of the flag characters in various 
situations. 



www.manaraa.com

442 

mainO 
{ 

} 

printf ( "%%5d\ t%5d\n", 25 ); 
printf ( "%%-5d\ t%-5d\n" , 25 ); 
printf( "%%+5d\t%+5d\n\n" , 25 ); 
printf( "%%o\t%o\n" , 25 ); 
printf( "%%#o\t%#o\n" , 25 ); 
printf( "%%x\t%x\n" , 25 ); 
printf( "%%#x\t%#x\n\n" , 25 ); 
printf( "%%5.0f\t%5.0f\n", 25.0 ); 
printf( "%%#5.0f\t%#5.0f\n\n",25.0 ); 
printf( "%%+-5d\t%+-5d\n" , 25 ); 
printf( "%%+#5.0f\t+#5.0f\n\n", 25.0 ); 
exit ( 0 ); 

The output is: 

%5d 25 
%-5d 25 
%+5d +25 

%0 31 
%#0 031 
%x 19 
%#x Ox19 

%5.0f 25 
%#5.0f 25. 

%+-5d +25 
%+#5. Of +25. 

Appendix A 

Note that the flags are not mutually exclusive. You can combine them, as 
shown in the last two printfO calls. 

Minimum Field Width - The next optional format component is an op­
tional minimum field width. This is a decimal constant that represents 
the minimum number of characters to output. If the data item requires 
fewer characters, it is padded on either the left or the right until the mini­
mum width is reached. (The default is to pad on the left, but you can 
specify right padding with the left adjustment flag.) The default pad char­
acter is a space, but you can make it a zero by making the first digit of 
the minimum field width a zero. If the value requires more characters 
than the minimum field width, the field is expanded to accommodate the 
data. The value is never truncated. 

Another way to express the minimum field width is through a dynamic 
variable. In this case, you enter an asterisk (*) which informs the 



www.manaraa.com

The ANSI Runtime Library 443 

printfO function to use the next data argument as the field width. The 
following examples show the effects of several minimum field width speci­
fications. 

main( ) 
{ 

} 

printf( n%%lOd\t%lOd\nn, 25 ); 
printf( n%%OlOd\t%OlOd\nn, 25 ); 
printf( n%%ld\t%ld\nn, 25 ); 
printf( n%%*f\t%*f\nn, 5, 33.87 ); 
printf( n%%7f\t%7f\nn, 33.87 ); 
exit( 0 ); 

The output is: 

%lOd 
%OlOd 
%ld 

25 
0000000025 
25 
33.87000 
33.8700000 

%*f 
%7f 

Note that the 5 in the fourth printfO call corresponds to the asterisk in 
the format specifier and represents the minimum field width for the next 
data item. 

Precision Specifier - The next optional component is a precision 
specifier, which is designated by a period followed by a decimal constant. 
For floating-point values, the precision determines the number of digits 
to appear after the decimal point. For integer values, the precision 
specifier has the same meaning as the minimum field width specifier and 
overrides that specifier. For strings, the precision specifier denotes the 
maximum number of characters to print. 

The program below illustrates the effects of several precision specifica­
tions. 

main( ) 
{ 

printf ( "%%5d\ t%5d\n", 25 ); 
printf( "%%5.3d\t%5.3d\n", 25 ); 
printf ( "%%. 3d\ t%. 3d\n" , 25 ); 
printf( "%%4.3f\t%4.3f\nn, 23.45 ); 
printf( "%%4.3f\t%4.3f\n", 23.456789 ); 
printf( n%%4.3e\t%4.3e\n", 23.456789 ); 
printf( "%%.lOs\t%.lOs\n", "Print only the first\ 

ten characters." ); 
exit( 0 ); 

} 



www.manaraa.com

444 

The output is: 

%5d 
%5.3d 
%.3d 
%4.3f 
%4.3f 
%4.3e 
%.10s 

25 
025 

025 
23.450 
23.457 
0.235e+02 
Print only 

Appendix A 

Note that for integer conversions, the field is padded with zeros on the 
left until the precision length is reached. For floating-point values, if the 
true value cannot be expressed in the number of digits reserved by the 
precision, it is rounded. Rounding can occur either up or down, depend­
ing on the implementation. 

Short and Long Specifiers - Just before the conversion character, you 
may enter an h, I, or L. The h signifies that the corresponding data item 
is a short int or unsigned short int, and the I signifies that the data item 
is a long int or unsigned long into These prefixes may only be used for 
integer specifiers. An L signifies that the corresponding argument is a 
long double. Since integral arguments are converted to int and floating­
point arguments are converted to double when they are passed to 
print/O, these prefixes ensure that arguments are cast back to their origi­
nal type. If used for incompatible types, these flags are are ignored. 

A.13.2S The pute () Function 
#include <stdio.h> 
int putC( int c, FILE *stream ); 

The puteO function writes a character to the specified stream. It is 
equivalent to /puteO except that it may be implemented as a macro in­
stead of a function. puteO returns EOF if an error occurs; otherwise, it 
returns the character written. Note that both the argument and the re­
turned value are ints. puteO outputs the least significant byte of the ar­
gument. 

A.13.26 The putehar() Function 
#include <stdio.h> 
int putchar( int c ); 

The puteharO function writes its argument to the standard output stream 
(stdout), and returns the character written. If an error occurs, puteharO 
returns EOF. 



www.manaraa.com

The ANSI Runtime Library 

The expression, 

putchar( c 

is equivalent to: 

putc( c, stdout 

A.13.27 The puts () Function 
#include <stdio.h> 
int puts( const char *s ); 

445 

The putsO function writes the string pointed to by s to the standard out­
put stream (stdout) and appends a newline character to the output. The 
terminating null character in the array is not written. The call 

puts( s ) 

is equivalent to 

fputs( s, stdin 

except thatfputsO does not append a newline character. IfputsO is suc­
cessful, it returns zero; if an error occurs, it returns a non-zero value. 

A.13.28 The remove () Function 
#include <stdio.h> 
int remove( const char *filename ); 

The remove 0 function is used to delete the file identified by filename. 
If you try to delete a file that is open, the results are implementation-de­
fined. remove 0 returns zero if successful, or a non-zero value in the 
event of a failure. This is a new function that is not included in older C 
and UNIX libraries. 

A.13.29 The rename () Function 
#include <stdio.h> 
int rename( const char *old, const char *new ); 

The rename 0 function enables you to change the name of a file from the 
name pointed to by old to the name pointed to by new. After execution, 
the name identified by the pointer old no longer exists. If the file identi­
fied by the pointer old is open, the effect is implementation defined. 
Likewise, if the name pointed to by new already exists, the results are im­
plementation defined. renameO returns zero when it succeeds and a 
non-zero value when it fails. 



www.manaraa.com

446 Appendix A 

A.13.30 The rewind() Function 
#include <stdio.h> 
void rewind( FILE *stream.); 

The rewind () function moves the file position indicator for stream to the 
beginning of the file. The file identified by stream should be open on a 
rewind 0 call. The function call, 

rewind ( s ) 

is equivalent to, 

(void)fseek( s, OL, SET_SEEK) 

except that the rewind() function clears the end-of-file and error indica­
tors for the stream and does not return a value. 

A.13.31 The scanf() Function 
#include <stdio.h> 
int scanf( FILE *stream, const char *format, ... ); 

The scanf() function reads data from stdin in a form specified by a for­
mat string. The syntax and semantics of scanf() are, to a large extent, 
the reverse of the printf() function. However, there are enough differ­
ences that you should not assume that conversion specifiers behave iden­
tically in both functions. 

As with the printfO function, the first argument to scanfO is a format 
string. There can be any number of data arguments following the format 
string. Each one should be the address of a variable where the data is to 
be stored. The data type of each pointer argument must match the type 
specified by the corresponding conversion character. 

The format string consists of literal characters interspersed with conver­
sion specifiers. A conversion specifier begins with a percent sign followed 
by optional conversion modifiers and a required conversion character. It 
designates how many characters to read and how to interpret them. 
Characters other than a conversion string, a space, a newline, or a verti­
cal tab must match characters in the input stream. A space, horizontal 
tab, or newline character occurring in the format string causes scanf() to 
skip over characters up to the next non-space character. For example, 
the statement, 

scanf( " Value: %d", &n ); 

directs scanf() to skip over leading spaces, to read the literal "Value:", 
and then to read a decimal constant and store it in the object pointed to 
by n. If the first non-space characters are not "Value:", the function will 
fail and the results are unpredictable. 



www.manaraa.com

The ANSI Runtime Library 447 

The legal conversion characters and their meanings are shown in Table 
A-S. 

Conversion 
Character 

d 

o 

u 

x, X 

e, E, f, g, G 

Effect 

Reads a decimal integer. The correspond­
ing data argument should be a pointer to 
an integer. 

Reads a decimal integer, possibly with a 
prefix and/or suffix. Legal prefixes are a 
minus sign (-), a plus sign (+), Ox or OX to 
denote a hexadecimal constant, and 0 to 
denote an octal constant. Legal suffixes 
are u or U to denote an unsigned integer, 
and I or L to denote a long integer. The 
corresponding data argument should be the 
address of a variable with the appropriate 
type. 

Reads an octal constant. Even if the con­
stant does not begin with a 0, it is treated 
as an octal value. The corresponding argu­
ment should be the address of an integer 
variable. 

Reads an unsigned decimal constant. The 
corresponding data argument should be the 
address of an integer variable. 

Reads a hexadecimal constant. The corre­
sponding data argument should be the ad­
dress of an integer variable. 

Reads a floating-point constant. The cor­
responding data argument should be a 
pointer to a float. (Use an I prefix to indi­
cate that the corresponding argument is a 
pointer to a double, and an L prefix to in­
dicate that the corresponding argument is a 
pointer to a long double.) The floating 
point constant may appear in either deci­
mal or scientific form. These format char­
acters may be used interchangeably. 

Table A-B. scanf() Conversion Charaoters. (oontlnued on next page) 



www.manaraa.com

448 

Conversion 
Character 

s 

c 

p 

n 

Appendix A 

Effect 

Reads a character string. Characters are 
read until a space, horizontal tab, or 
newline is encountered. The correspond­
ing argument should be a pointer to an ar­
ray of chars. Each character in the string 
is loaded irito the subsequent array element 
up to, but not including, the terminating 
null character. The scanfO function auto­
matically adds a null character as the last 
character of the string. Since there is no 
bounds checking in C, it is your responsi­
bility to ensure that the character array is 
long enough to hold the input string. 

Reads the next character in the stream. It 
does not skip over spaces, null characters 
or tabs. To read the next non-space char­
acter, use %18. If the c conversion charac­
ter is preceded by a field width, then the 
specified number of characters are read 
and the corresponding data argument 
should be a pointer to an array of chars. 
Otherwise, the data argument can be a 
pointer to a single char. 

Reads a pointer. The actual representation 
of the pointer value in the input field is im­
plementation defined, but it should be the 
same as that produced by the %p conver­
sion of printfO. The corresponding data 
argument must be a pointer to a pointer to 
void. 

Records the number of characters read 
thus far by this scanfO call. No characters 
are read for this conversion character. 
The corresponding data argument should 
be a pointer to an integer. 

Table A-B. scanfO Conversion Characters. (continued on next page) 



www.manaraa.com

The ANSI Runtime Library 

Conversion 
Character 

[ scan list] 

% 

Effect 

Reads a character string. If the first char­
acter in the scan list (a list of characters) is 
not a circumflex (A), then characters are 
read from the input stream until a charac­
ter is read that is not a member of the scan 
list. If the first character is a circumflex, 
then the scan list serves as a terminating 
set-scanf() reads characters from the in­
put stream until it encounters one of the 
characters in the list. The corresponding 
data argument should be a pointer to an 
array of chars. The array is loaded with 
the characters read. scanf() automatically 
appends a null character after the last 
character. 

Reads a percent sign. No assignment oc­
curs. 

Table A-B. scanf() Conversion Characters. 
(continued from preceding pages) 

449 

Any conversion character may be preceded by a maximum field width or 
an assignment suppression flag. The field width is written in the form of 
a decimal digit and directs the scanf() function not to read any more 
than the specified number of characters for that particular item. The as­
signment suppression flag is an asterisk (*), which causes scanf() to read 
the data item but not to assign it to a variable. Consequently, you should 
not enter a corresponding data pointer for a conversion specification with 
an asterisk. 

The scanf() function continues reading characters from the input stream 
until the format string is exhausted, or an end-of-file is encountered, or 
a conflict occurs. A conflict can occur whenever the next character in 
the stream does not match the conversion specifier. For example, the 
next character might be a letter, whereas the conversion specifier indi­
cates a numeric value. A conflict also occurs if the format string contains 
a string literal that is not matched by the next character in the input 
stream. Regardless of whether a conflict occurs or whether scanf() com­
pletes successfully, it returns the number of data items assigned. How­
ever, if an end-of-file is encountered before a conversion or conflict 
takes place, scanf() returns EOF. 



www.manaraa.com

450 Appendix A 

The following examples show several ways to read an input stream using 
scan/(). Assume that the input stream for all three examples is: 

The value of pi to 7 digits is 3.1415978 

Example 1: 

int digits; 
float pi; 
scanf( "The value of pi to %d decimal digits is %f", 

&digits, &pi ); 

The value 7 is loaded into digits and 3.1415978 is assigned to pi. The 
string literals are matched and ignored. They serve only to move the file 
position indicator so that the numeric data can be read. 

Example 2: 

short digits; 
double pi; 
char str[80]; 
scanf ( "%19c %hd %*19c %5 If " , str, &digits, &pi ); 

In this example, the number of digits and the value of pi are assigned to 
short and double variables, respectively. The field width designation in 
%51f causes scan/() to read only the first 5 characters of pi (3.1415). 
The first part of the text is assigned to the array str []; the second part has 
assignment suppressed by the asterisk. Note that there are only three 
data arguments even though there are four conversion specifiers because 
one of them is suppressed. Also note that the data argument for the text 
string is simply str, since an array name by itself is automatically con­
verted to a pointer to the initial element of the array. 

Example 3: 

long digits; 
long double pi; 
str[80] ; 
scanf( "%*s %*s %*s %*s %*s %ld %*s %*s %*s %Lf" , 

&digits, &pi ); 

The number of digits and the value of pi are assigned to a long and long 
double, respectively. Each word in the input text is read by a %s conver­
sion specifier, but assignment is suppressed. 



www.manaraa.com

The ANSI Runtime Library 451 

A.13.32 The setbuf() Function 

#include <stdio.h> 
void setbuf( FILE * stream , char *buf ); 

The setbufO function is used to change the buffering properties of a 
stream. Normally, input and output is stored in blocks until the block is 
filled, and then the entire block is sent to its destination. The size of a 
block is implementation defined, but is typically 512 or 1024 bytes. This 
function enables you to make the stream unbuffered. When a stream is 
unbuffered, characters are sent to their destination immediately. Use 
setvbufO to change the size of the buffer. 

The setbufO function should only be called after a stream has been 
opened, and before it has been read from or written to. Once you have 
performed an I/O operation on a stream, you cannot change its buffer 
properties. 

To change the default size of a block, you must allocate your own buffer 
by declaring an array of chars of the desired block size. Then pass a 
pointer to this array as the second argument. Note that this array must 
exist at least as long as the stream is open. If it has automatic duration, 

·therefore, make sure that its scope is wide enough so that it is not deallo-
cated before the stream is closed. To make a stream unbuffered, pass a 
null pointer. 

The maximum size of a buffer is implementation defined and is recorded 
in the constant BUFSIZ. 

The standard output stream stdout is automatically buffered only if the 
stream does not point to a terminal. 

The standard diagnostic stream stderr is unbuffered by default. 

Except that it returns no value, the setbufO function is equivalent to 
setvbufO invoked with the values of JOFBF for mode and BUFSIZ for 
size, or (if buf is a null pointer), with the value JONBF for mode. 

A.13.33 The setvbuf(J Function 

#include <stdio.h> 
int setvbuf( FILE *stream, char *buf, int mode, 

size_t size ); 

The setvbufO function enables you to change the default buffering pa­
rameters for a stream. Use setvbufO after you have opened a stream, but 
before you have read from or written to it. 



www.manaraa.com

452 Appendix A 

There are three choices for the argument mode, each of which is a macro 
defined in stdio.h: 

jOFBF 

jOLBF 

jONBF 

forces I/O to be fully buffered. 

causes output to be line buffered. 

causes I/O to be unbuffered. 

If bufis not a null pointer, the array it points to may be used as the buffer 
instead of an array automatically allocated by the runtime system. Note, 
however, that the array pointed to by buf must have at least as long a life­
time as the stream to which it is associated. 

The argument size specifies the size of the array pointed to by buf. The 
contents of this array at any time are indeterminate. 

The setvbufO function returns zero if it is successful. It returns a non­
zero value if the arguments are invalid, or if the request cannot be hon­
ored for some other reason. 

A.13.34 The sprintf() Function 
#include <stdio.h> 
int sprintf( char *s, const char *format, ... ); 

The sprintfO function behaves exactly likefprintfO, except that the data 
is written to a character array instead of an output stream. sprintfO ap­
pends a null character after the last character written. It returns the 
number of characters assigned, not including the terminating null. See 
the description of printfO for more information. 

The sprintfO function subsumes the older ecvtO, fcvtO, and gcvtO func­
tions. 

A.13.35 The sscanf() Function 
#include <stdio.h> 
int sscanf( char *s, const char *format, ... ); 

The sscanfO function is the same as fscanfO, except that the first argu­
ment identifies an array rather than a stream from which to read input. 
See the description of scanfO for more information. 



www.manaraa.com

The ANSI Runtime Library 

A.13.36 The tmpfile() Function 
#include <stdio.h> 
FILE *tmpfile( void ); 

453 

The tmpfileO function creates a temporary binary file. The file is opened 
with update status in binary mode (wb+). It is automatically deleted 
when it is closed. whether explicitly or implicitly. tmpfile 0 returns a 
pointer to the stream of the new file. If for some reason the file cannot 
be created. tmpfite 0 returns a null pointer. 

A.13.37 The tmpnam () Function 
#include <stdio.h> 
char *tmpnam( char *s ); 

Like the tmpfileO function. tmpnamO is used to create a temporary file. 
However. tmpnam 0 is more flexible than tmpfile 0 . The tmpnam 0 
function enables you to open a file in either binary or text mode. and the 
file is not automatically deleted. 

tmpnam 0 generates a filename that is guaranteed not to conflict with 
other filenames. If you pass a null pointer. tmpnamO generates a file 
name. but leaves it in an internal static object and returns a pointer to 
that object. Subsequent calls to tmpnamO can modify the file name. If 
you pass a pointer with a non-zero value. however. tmpnam 0 assumes 
that you have allocated enough storage for the new name so it generates a 
name. stores it at the passed address. and returns the pointer argument as 
the result. The maximum file name length is stored in L _tmpnam. which 
is defined in <limits.h>. 

The tmpnam 0 function is guaranteed to generate at least 25 unique 
names before it begins duplicating itself. The actual implementation-de­
fined number of unique names is represented by the constant 
TMP _MAX. The file that is created has the same properties as other files 
created within the C context. You can open and close it with calls to 
fopen 0 and fclose O. To delete it. you must explicitly remove 0 it. 

A.13.38 The vfprintf() Function 
#include <stdarg.h> 
#include <stdio.h> 
int vfprintf( FILE *stream, const char *format, 

va_list arg ); 

The vfprintfO function can be used in conjunction with the variable argu­
ment macros to perform the same operation as fprintfO. The difference 



www.manaraa.com

454 Appendix A 

is that the variable argument list is replaced by the array arg, which must 
be initialized by the va_start macro. See Section A-12 on variable argu­
ment macros for more information. 

A.13.39 The vprintf() Function 
#include <stdarg.h> 
#include <stdio.h> 
int vprintf( const char *format, va_list arg ); 

The vprintfO function can be used in conjunction with the variable argu­
ment macros to perform the same operation as printfO. The difference 
is that the variable argument list is replaced by the array arg, which must 
be initialized by the va_start macro. See Section A-12 on variable argu­
ment macros for more information. 

A.13.40 The vsprintf() Function 
#include <stdarg.h> 
#include <stdio.h> 
int vsprintf( FILE *stream, const char *format, 

va_list arg ); 

The vsprintfO function can be used in conjunction with the variable argu­
ment macros to perform the same operation as sprintfO. The difference 
is that the variable argument list is replaced by the array arg, which must 
be initialized by the va_start macro. See Section A-12 on variable argu­
ment macros for more information. 

A.13.41 The ungetc() Function 
#include <stdio.h> 
int ungetc( int c, FILE *stream ); 

The ungetcO function pushes a character. (specified by c) back onto the 
specified input stream. The pushed character will be the next character 
read assuming there is no intervening fseek O. Note that ungetc 0 affects 
the buffer, but not the file or device associated with the stream. More­
over, ungetcO affects the file position indicator in undefined ways, so it is 
not wise to mix calls to ungetcO with calls to fseekO that use the 
SEEK_CUR mode. 

If ungetcO cannot push the character onto a stream, it returns EOF. 
Otherwise, it returns c. 



www.manaraa.com

The ANSI Runtime Library 455 

A.14 General Utilities 
The <stdlib. h> header file declares two types and a number of functions 
that fall under the category of "general utilities." This group of functions 
can be further divided into the following subgroups: 

• String Conversion Functions 

• Pseudo-Random Number Generation Functions 

• Memory Management Functions 

• Environment Functions 

• Searching and Sorting Functions 

• Integer Arithmetic Functions 

The two types defined in <stdlib.h> are: 

A structure returned by the divO function. 

ldiv t A structure returned by the ldivO function. 

The <stdlib.h> header file also defines three macros: 

ERANGE 

HUGE VAL 

RAND MAX 

Expands to an integer value that is assigned 
to erma whenever the result of a function is 
too large to be represented in the return type 
object. 

Expands to a value that is returned when­
ever the result of a function is too large to be 
represented in the return type object. 

Expands to an integral constant expression 
whose value represents the maximum value 
returned by the rand 0 function. 

A.14.1 String Conversion Functions 
The following functions convert a string of characters into a numeric 
value. For example, 

atoi ( "1234" ) 

returns the integer value 1234. 



www.manaraa.com

456 Appendix A 

A.14.1.1 The atofO Function 
#include <stdlib.h> 
double atof( const char *nptr ); 

The atofO function converts the string pointed to by nptr into a double 
value. It is equivalent to the strtodO function except that it does not 
have the same error reporting facilities. 

A.14.1.2 The atoi 0 Function 
#include <stdlib.h> 
int atoi( const char *nptr ); 

The atoiO function converts the string pointed to by nptr into its int rep­
resentation. 

A.14.1.3 The atolO Function 
#include <stdlib.h> 
long atol( const char *nptr ); 

The atolO function converts the string pointed to by nptr into its long int 
representation. It is equivalent to the strtolO function except that it does 
not include the same error-reporting facilities. 

A.14.1.4 The strtod 0 Function 
#include <stdlib.h> 
double strtod( const char *nptr, char **endptr ); 

The strtod 0 function interprets the string pointed to by nptr as a float­
ing-point value and returns its double representation. The string may 
contain leading spaces, which are ignored, followed by an optional plus 
or minus sign, followed by the floating point number in either regular or 
scientific notation. If the string represents an integer value (i.e., there is 
no decimal point). the strtod 0 function assumes a decimal point follow­
ing the last digit. If an inappropriate character appears before the first 
digit following an e or E. the exponent is assumed to be zero. 

The function continues reading and processing characters in the string 
until it reaches a character that cannot be part of the floating-point 
value. At this point. the function concludes and assigns a pointer to the 
unrecognized character to endptr (if endptr is a null pointer, however. 
no assignment takes place). 

Assuming successful completion. the strtodO function returns the double 
value of the string. If the function cannot decipher a floating-point 



www.manaraa.com

The ANSI Runtime Library 457 

value, it returns zero and sets errno to EDOM. It also assigns the value 
of nptr to the object pointed to by endptr, assuming endptr is not a null 
pointer. 

If strtod 0 successfully interprets the floating-point value, but the value is 
too large to fit in a double, the function returns HUGE_VAL (or negative 
HUGE_VAL if the floating-point value is negative), and sets errno to 
ERANGE. If the floating-point value is too small to be represented in a 
double, the function returns zero and sets errno to ERANGE. 

A.14.1.S The strtol () Function 
#include <stdlib.h> 
long strtol( const char *nptr, char **endptr, 

int base); 

The strtolO function converts the string pointed to by nptr into its long 
int representation in any base from 2 through 36. Leading white space is 
ignored and an optional plus or minus sign is allowed .. 

If the base value is zero, then the string is interpreted as a decimal integer 
constant, possibly preceded by a plus or minus sign, but not including an 
integer suffix. Otherwise, the value of base should be between 2 and 36 
to indicate the base to be used for conversion. Bases greater than 10 use 
alphabetic letters from a (valued at 10) to z (valued at 35). If the value 
of base is 16, the integer may include a OX or Ox prefix to indicate a 
hexadecimal constant. 

The strtolO function continues reading characters until it reaches a char­
acter that cannot be part of the number. A pointer to this character is as­
signed to endptr. (If endptr is a null pointer, however, no assignment 
takes place). 

Upon successful completion, strtolO returns the converted value. If it 
cannot decipher an integer from the string, it returns zero and sets errno 
to EDOM. It also assigns the value of nptr to the object pointed to by 
endptr, assuming endptr is not a null pointer. 

If strtolO successfully interprets the integer value, but it is too large to fit 
in a long int, the function returns LONG_MAX or LONGflIN, depend­
ing on the sign of the value, and sets errno to ERANGE. 



www.manaraa.com

458 Appendix A 

A.14.1.6 The strtou I () Function 
#include <stdlib.h> 
unsigned long int strtoul( const char *nptr, 

char **endptr, int base ); 

The strtoulO function converts the string pointed to by nptr into its un­
signed long Int representation in any base from 2 through 36. Leading 
white space is ignored. An optional plus or minus sign is not allowed. 

If the base value is zero, then the string is interpreted as a decimal integer 
constant, not including an integer suffix. Otherwise, the value of base 
should be between 2 and 36 to indicate the base to be used for conver­
sion. Bases greater than 10 use alphabetic letters from a (valued at 10) 
to z (valued at 35). If the value of base is 16, the integer may include a 
OX or Ox prefix to indicate a hexadecimal constant. 

The strtolO function continues reading characters until it reaches a char­
acter that cannot be part of the number. A pointer to this character is as­
signed to endptr. (If endptr is a null pointer, however, no assignment 
takes place). 

Upon successful completion, strtolO returns the converted value. If it 
cannot decipher an integer from the string, it returns zero and sets errno 
to EDOM. It also assigns the value of nptr to the object pointed to by 
endptr, assuming endptr is not a null pointer. 

If strtolO successfully interprets the integer value, but it is too large to fit 
in a unsigned long int, the function returns ULONG_MAX and sets er­
rno to ERANGE. 

A.14.2 Pseudo-Random Number Generator 
Functions 

The rand 0 and srand 0 functions enable you to generate 
pseudo-random numbers. 

A.14.2.1 The rand () Function 
#include <stdlib.h> 
int rand( void ); 

Thr rand 0 function returns an integer in the range 0 through 
RAND_MAX. Successive calls to randO should produce different inte­
gers. However, the sequence of random numbers could be the same for 
each program execution unless you use a different seed value via the 
srandO function. 



www.manaraa.com

The ANSI Runtime Library 459 

A.14.2.2 The srand () Function 
#include <stdlib.h> 
void srand( unsigned int seed ); 

The srand 0 function uses the argument as a seed for a new sequence of 
pseudo-random numbers to be returned by subsequent calls to rand 0 . 
If srand() is invoked with the same seed value, the sequence of generated 
numbers will be the same. The default seed value is 1. 

A.14.3 Memory Management Functions 
The memory management functions enable you to allocate and deallo­
cate memory dynamically. See Chapter 7 for more information about 
these functions. 

A.14.3.1 The cal/oc () Function 
#include <stdlib.h> 
void *calloc( size_t nmemb, size_t size ); 

The calloc() function allocates contiguous space for nmemb objects, each 
of which has a length in bytes specified by size. All bits in the allocated 
space are initialized to zero. calloc() returns a pointer to the first byte of 
the allocated space. If the space cannot be allocated, or if nelem or size 
is zero, eal/oeO returns a null pointer. 

A.14.3.2 The free() Function 
#include <stdlib.h> 
void free( void *ptr ); 

The free 0 function de allocates the space pointed to by ptr, which should 
hold an address returned by a previous call to calloe 0, malloe 0, or real­
loc O. If ptr is a null pointer, free 0 takes no action. If ptr points to an 
area that was not previously allocated by one of the memory-manage­
ment functions, or to an area that has already been deallocated, the be­
havior is undefined. Once a memory area has been freed, you should as­
sume that its contents have been destroyed. You should not attempt to 
use the area again. The operating system may recycle the area for future 
use, but this is beyond your control. 

Note that the ANSI Standard does not support cfreeO, which in many 
implementations, is used to free space allocated by eallocO. 



www.manaraa.com

460 

A.14.3.3 The mal/ocO Function 
#include <stdlib.h> 
void malloc( size_t size ); 

Appendix A 

The malloeO function allocates space for an object whose length is speci­
fied by size. malloeO returns a pointer to the first byte of the allocated 
space. If the space cannot be allocated, or if size is zero, malloeO re­
turns a null pointer. The space allocated by malloe 0 is not initialized to 
any special value. 

A.14.3.4 The real/ocO Function 
#include <stdlib.h> 
void realloc( void *ptr, size_t size ); 

The realloeO function changes the size of a previously allocated space. 
The ptr argument should hold the address of an area previously allocated 
by malloeO, ealloeO, or realloeO. The size argument specifies the new 
size. If the new size is smaller than the old size, the unused portion at the 
end is discarded. If the new size is larger than the old size, then all of the 
old contents are preserved, and new memory is tacked on to the end. 
The new space is not initialized. 

realloeO returns a pointer to the first byte of the new object. If the space 
cannot be allocate9, realloeO returns a null pointer, but leaves the mem­
ory area unchanged. If ptr is a null pointer, realloeO behaves just like a 
malloeO function. If size equals zero, realloeO returns a null pointer 
and frees up the space pointed to by ptr. If ptr does not point to a previ­
ously allocated area, the behavior is undefined. 

A.14.4 Environment Functions 
The C library contains several functions for communicating with the com­
puter environment, usually through the operating system. These func­
tions enable you to exit prematurely from a program, to specify behavior 
after program termination, and to execute operating system commands. 

A.14.4.1 The abortO Function 
#include <stdlib.h> 
void abort( void ); 

The abortO function causes abnormal termination of a program. There 
is no guarantee that buffers will be flushed. that open streams will be 
closed. or that temporary files will be deleted. The abortO function can 



www.manaraa.com

The ANSI Runtime Library 461 

be turned off by catching the SIGABRT signal with the signalO function. 
If the SIGABRT signal is not caught, the abortO function causes an un­
successful termination status to be returned to the host environment by 
means of the function call: 

raise( SIGABRT ) 

If the SIGABRT signal is being ignored, abortO returns no value. Other­
wise, abortO causes program termination, so it cannot return to its caller. 

A.14.4.2 The atexit() Function 
#include <stdlib.h> 
int atexit( void (*func)( void) ); 

The atexitO function provides a program with a convenient way to clean 
up an environment before the program exits. The atexitO function takes 
a pointer to a function as an argument and registers that function to be 
called at program termination. You can register at least 32 functions that 
will be invoked in the reverse order from which they are registered. The 
registered functions may not themselves take arguments. When the regis­
tered functions are executed, the program environment is the same as 
when the mainO function is called at program start up. Therefore, these 
functions should not use variables declared in other modules, even if they 
have fixed duration. 

If it succeeds, atexitO returns zero. Otherwise, it returns a non-zero 
value. 

A.14.4.3 The exit() Function 
#include <stdlib.h> 
void exit( int status ); 

The exit 0 function produces normal program termination. First, all 
functions registered by the atexitO function are called, in reverse order 
of their registration. Next, all open output streams are flushed, all open 
streams are closed, and all files created by the tmpfile 0 function are de­
leted. Finally, control is returned to the host environment. If the value 
of status is zero, the status returned is successful termination; otherwise 
the returned status is unsuccessful termination. Invoking exitO is the 
same as returning from main 0, with the exception that the exit 0 call 
causes all functions registered by atexitO to be invoked. 



www.manaraa.com

462 

A.14.4.4 The getenv() Function 
#include <stdlib.h> 
char *getenv( const char *name ); 

Appendix A 

Each environment has an implementation-defined environment list, of 
which each entry has the form name == value. The getenv 0 function 
matches the argument string to one of the names in the list and returns 
the corresponding value. If the argument does not match any names in 
the list, a null pointer is returned. 

A.14.4.S The system () Function 
#include <stdlib.h> 
int system( const char *string ); 

The systemO function passes the string pointed to by string to the host 
environment to be executed. The string should be a command meaning­
ful to the command processor in the host environment. Before calling 
systemO, you should close all open files since the operating system may 
access them in unexpected ways. 

If string is a null pointer, the function call is interpreted as a request to 
see whether a command processor exists. systemO returns zero if there 
is no command processor, or a non-zero value to indicate that a com­
mand processor exists. If the argument is not a null pointer, systemO re­
turns an implementation-defined value. 

A.14.S Searching and Sorting Functions 
These functions are efficient routines that enable you to search for an ob­
ject in an array and to sort an array. Although they are general-purpose 
routines, they have usually been finely tuned to run efficiently. 

A.14.S.1 The bsearch () Function 
#include <stdlib.h> 
void bsearch( const void *key, const void *base, 

size_t neI, size_t *keysize, 
int (*compar) ( const void *, const void * ) ); 

The bsearchO function searches an array for an element that matches 
the object pointed to by key. The array itself is identified by the base ar­
gument, which points to the array's initial element. The nel argument 
specifies the number of array elements to search through, and keysize 
represents the size of each element. 



www.manaraa.com

The ANSI Runtime Library 463 

The array must have been previously sorted in ascending order according 
to a comparison function pointed to by compar. The comparison func­
tion, which you must supply, takes two arguments and returns a negative 
number if the object pointed to by the first argument is less than the ob­
ject pointed to by the second, zero if the two arguments are equal, or a 
positive number if the first argument is greater than the second. The run­
time library supplies a standard comparison function called memcmp 0 . 

bsearchO returns a pointer to the matching object in the array, or a null 
pointer if no match is found. If two members compare as equal, a point­
er to either one may be returned, depending on the implementation. 

A.14.S.2 The qsort() Function 
#include <stdlib.h> 
void qsort( void *base, size_t nel, size_t keysize, 

int (*compar)( const void *, const void * ) ); 

The qsortO function sorts an array of nel objects in ascending order. 
The initial element of the array is pointed to by base, and keysize speci­
fies the length of each object. The array is sorted according to a com­
parison function pointed to by compar. 

The comparison function, which you must supply, takes two arguments 
and returns a negative number if the first argument is less than the sec­
ond, zero if the two arguments are equal, or a positive number if the first 
argument is greater than the second. The runtime library supplies a stan­
dard comparison function called memcmp O. If two elements in the array 
are equal, their order is unspecified. qsortO does not return a value. 

A.14.6 Integer Arithmetic Functions 
The following functions take integer arguments. 

A.14.6.1 The abs() Function 
#include <stdlib.h> 
int abs( int i ); 

The absO function returns the absolute value of i. If the result cannot be 
represented by an int, the behavior is undefined. For example, in two's 
complement notation, the absolute value of the largest negative number 
cannot be represented. 



www.manaraa.com

464 Appendix A 

A.14.6.2 The div() Function 
#include <stdlib.h> 
div_t idiv( int numer, int denom ); 

The divO function divides denom into numer and returns a structure con­
taining the quotient and remainder. The structure contains the following 
members: 

int quot; 
int rem; 

/* quotient */ 
/* remainder */ 

If the result cannot be represented, the behavior is undefined. 

A.14.6.3 The labs() Function 
#include <stdlib.h> 
long int labs( long int j ); 

The labs 0 function is equivalent to the abs () function, except that the 
argument and retrun value have type long into 

A.14.6.4 The Idiv() Function 
#include <stdlih.h> 
ldiv_t ldiv( long numer, long den om ); 

The ldiv () function is identical to idiv 0, except that the arguments and 
results are long ints instead of ints. 



www.manaraa.com

The ANSI Runtime Library 465 

A.1S String-Handling Functions 
The C library contains a number of useful functions for manipulating 
character strings. All of these functions require that the header file 
<string.h> be included. These functions fall into three general catego­
ries: 

• Functions that begin with str operate on null-terminated strings. 

• Functions that begin with stm operate on strings with a specified 
maximum length. 

• Functions that begin with mem operate on arrays of data objects 
of specified length. 

A.1S.1 The memchr() Function 
#include <string.h> 
void *memchr( const void *s, int c, size_t n ); 

The memchr() function locates the first occurrence of c (converted to an 
unsigned char) in the array pointed to by s. If it finds the value, 
memchr() returns a pointer to it; otherwise, memchr() returns a null 
pointer. 

A.1S.2 The memcmp () Function 
#include <string.h> 
int memcmp( const void *sl, const void *s2, 

size_t n. ); 

The memcmp() function compares the first n characters of s1 with s2. 
Each element in s 1 is compared in turn to the corresponding element in 
s2. As soon as they differ, memcmp() determines which is numerically 
greater. If s1 is greater, memcmp() returns a positive value; if s2 is 
greater, a negative value is returned; if the two are equal up to n ele­
ments, memcmp() returns zero. If there are fewer than n elements in 
either array, the results are undefined. 

Although the arguments to this function are defined as void *, the func­
tion was really intended to compare character strings. It may not work as 
expected for other types of objects. This is especially true for structures 
that contain holes, and objects that have the high-order bit set. See the 
description of strcmp () for contrast. 



www.manaraa.com

466 Appendix A 

A.1S.3 The memcpy() Function 
#include <string.h> 
void *memcpy( void *sl, const void *s2, size_t n ); 

The memcpy() function copies n characters from string s2 to string sl. If 
the strings overlap, the behavior is undefined. memcpy() returns the 
value of sl. 

A.1S.4 The memset() Function 
#include <string.h> 
void *memset( void *s, int c, size_t n ); 

The memset() function provides a means for initializing an array to a par­
ticular value. It copies the value c (converted to an unsigned char) into 
the first n elements of array s. The memset() function returns the value 
s. 

A.1S.S The strcpy() Function 
#include <string.h> 
char *strcpy( char *sl, const char *s2 ); 

The strcpy() function copies the contents of string s2 into the array 
pointed to by s 1. The string identified by s2 must have a terminating null 
character, which is also copied. If the string and the array overlap, the 
results are undefined. strcpy() returns the value of sl. See the descrip­
tions of memcpy() and strncpy() for contrast. 

A.1S.6 The strncpy() Function 
#include <string.h> 
char *strncpy( char *sl, const char *s2, size t n ); 

The strncpy() function copies up to n characters from the string s2 into 
the array pointed to by sl. If the string to be copied is shorter than n 
characters, null characters are appended to the array as padding until n 
characters have been written. Note that if the string to be copied is 
longer than n characters, the array that gets the copy will not be null-ter­
minated. If the string and the array overlap, the results are undefined. 
strcpy() returns the value of sl. See the descriptions of memcpy() and 
strcpy () for contrast. 



www.manaraa.com

The ANSI Runtime Library 467 

A.1S.7 The strcol/ () Function 
#include <string.h> 
size_t strcoll( char *to, size_t maxsize, 

const char *from ); 

The strcollO function transforms the string pointed to by from so that it is 
suitable as an argument to memcmp 0 or strcmp 0 . This is particularly 
applicable to implementations where the local language forces text to be 
stored in an inconsistent manner. For example, some languages contain 
so many characters that they cannot all be stored in a char. The strcoll 0 
function makes it possible for two strings in such an implementation to be 
compared to one another. 

The transformed string is placed in the array pointed at by to. The re­
sulting string will never be more than twice the length of the original string 
(Plus room for the terminating null character). You can ensure that even 
fewer characters are stored in the to array with the maxsize argument. 
maxsize represents the maximum number of characters to be placed in 
the resulting string, including the terminating null character. 

If the resulting string contains no more than maxsize characters, strcoll 0 
returns the number of characters placed in the string. Otherwise, it re­
turns zero and the contents of the to array are indeterminate. 

A.1S.8 The strcat() Function 
#include <string.h> 
char *strcat( char *sl, const char *s2 ); 

The strcatO function appends a copy of string s2 to string sl. The termi­
nating null character in s 1 is overwritten by the initial character in s 2. 
Characters are copied from s2 until a terminating null character is 
reached (the null character is also copied). The results are undefined if 
the two strings overlap. In particular, you cannot necessarily double a 
string by using the same string as both arguments. strcatO returns the 
value of sl. 

A.1S.9 The strncat() Function 
#include <string.h> 
char *strncat( char *sl, const char *s2, size_t n ); 

The strncatO function appends up to n characters from string s2 to the 
end of string sl. The terminatin~ null character in sl is overwritten by 
the initial character in s2. If the terminating null character in s2 is 
reached before n characters have been written, the null character is cop-



www.manaraa.com

468 Appendix A 

ied, but no other characters are written. If n characters are written be­
fore a terminating null is encountered, the strncat 0 function appends its 
own terminating null character to s 1, so that n+ 1 characters are written. 
The results are undefined if the two strings overlap in memory. strncatO 
returns s1. 

A.1S.10 The strcmp () Function 
#include <string.h> 
int strcmp( const char *s1, const char *s2 ); 

The strcmpO function compares string s1 with string s2. If s1 is less than 
s2, strcmpO returns an integer greater than zero; if s1 is less than s2, a 
negative integer is returned; and if the two strings are equal, strcmpO re­
turns zero. See the description of memcmpO for contrast. 

A.1S.11 The strerror() Function 
#include <string.h> 
char *strerror( int errnum ); 

The strerrorO function returns a pointer to an error message represented 
byerrnum. The array which holds the message cannot be modified, but 
it can be overwritten by subsequent calls to strerrorO. 

A.1S~ 12 The strncmp () Function 
#include <string.h> 
int strncmp( const char *s1, const char *s2, 

size_t n ); 

The strncmp 0 function is the same as strcmp 0 except that it does not 
compare more than n characters. If s1 is greater than s2, strncmpO re­
turns an integer greater than zero; if s1 is less than s2, a negative integer 
is returned; and if the two strings are equal, strncmpO returns zero. 

A.1S.13 The strchr() Function 
#include <string.h> 
char *strchr( const char *5, int c ); 

The strchrO function locates the first occurrence of c (converted to a 
char) in the string s. The terminating null character is considered part of 
the string. If the character is located, strchrO returns a pointer to it. 
Otherwise, it returns a null pointer. 



www.manaraa.com

The ANSI Runtime Library 469 

A.1S.14 The strcspn () Function 
#include <string.h> 
size_t strcspn( const char *s1, const char *s2 ); 

Starting from the beginning of s 1, the strcspn () function counts charac­
ters that are not present in s2. As soon as it matches a character in the 
two strings, or it reaches the end of s1, it retums the number of charac­
ters read. The terminating null character is not considered part of s2. 

A.1S.1S The strpbrk () function 
#include <string.h> 
char *strpbrk( const char *s1, const char *s2 ); 

The strpbrk() function is the inverse of the strcspn() function. It locates 
the first character in sl that is also present in s2. It returns a pointer to 
this character, or a null character if no match occurs. The terminating 
null characters are not included. 

A.1S.16 The strrchr() Function 
#include <string.h> 
char *strrchr( const char *s, int c ); 

The strrchr() function locates the last occurrence of c (converted to a 
char) in string s. It returns a pointer to this character, or a null pointer if 
the character is not present in the string. 

A.1S.17 The strspn () Function 
#include <string.h> 
size_t strspn( const char *s1, const char *s2 ); 

The strspn 0 function counts characters in s 1, starting from the beginning 
of the string, until it reaches a character that is not present in s2. It re­
tums the number of characters counted. 

A.1S.18 The strstr() Function 
#include <string.h> 
char *strstr( const char *s1, const char *s2 ); 

The strstr() function locates the first occurrence of string s2 (not includ­
ing the terminating null character) in the string s1. It returns a pointer to 
the located string in s1, or a null pointer if no match occurs. 



www.manaraa.com

470 Appendix A 

A.1S.19 The strtok () Function 
#include <string.h> 
char *strtok( char *s1, const char *s2 )i 

The strtokO function divides a string into a number of tokens. The se­
mantics of strtok 0 are somewhat complex. The string s 1 is the string to 
be tokenized, while s2 contains the separator characters. The strtokO 
function is designed to be called multiple times to fully tokenize s 1. Its 
behavior on the first call is somewhat different from its behavior on sub­
sequent calls. The first call to strtokO operates as follows: 

1. strtokO locates the first character in sl that is not contained in 
s2. If no such character is found, strtokO returns a null pointer. 
If such a character is found, it represents the beginning of the 
first token. Ultimately a pointer to this character is returned, but 
first strtokO finds the end of the token as described in Step 2. 

2. Assuming it finds the beginning of a token, strtokO then looks 
for a character that is contained in s2. If it cannot find such a 
character, then the token extends to the end of sl, and subse­
quent searches for a token will fail. If it does find such a charac­
ter, it overwrites it with a null character which terminates the to­
ken. The strtokO function then saves a pointer to the next char­
acter in sl for use in subsequent calls. 

After the first call, all subsequent calls to strtokO should have NULL as 
the first argument. They begin tokenizing where the last strtok 0 function 
left off, and behave as described in Step 2. The following example illus­
trates the behavior of the strtokO function. 



www.manaraa.com

The ANSI Runtime Library 

#include <stddef.h> 
#include <string.h> 

main() 
{ 

static char s [] 
char *token; 

471 

"+a+b*(c-d)/e" 

token = strtok( s, "+" ); /* token points to "a" */ 
printf ( "%s\n", token ); 

/* token points to "b*" */ 
token = strtok( NULL, "(" ); 
printf ( "%s\n", token ); 

/*token points to "c-d" */ 
token = strtok( NULL, "+*/)" 
printf( "%s\n", token ) ; 

/* token points to "/e" */ 
token = strtok( NULL, "+" ) ; 
printf( "%s\n", token ) ; 

/* token is a null pointer */ 
token strtok( NULL, "+" ); 
exit ( 0 ); 

} 

The output is: 

a 
b* 
o-d 
/e 

) ; 



www.manaraa.com

472 Appendix A 

A.16 Date and Time Functions 
The date and time functions enable you to access the system clock and 
calendar in a variety of ways. All of these functions require inclusion of 
the header file <time.h>. There are three types of time that these func­
tions return: 

• calendar time represents the current date and time according to 
the Gregorian calendar; 

• local time is the calendar time expressed for a specific time zone; 

• daylight savings time reflects a temporary change in the local 
time due to daylight savings regulations. 

The header file defines one macro and declares three type definitions. 
The macro is: 

Represents the number per second of the 
value returned by the clockO function. 

The type definitions are: 

tm 

Arithmetic type capable of representing 
time. 

Arithmetic type capable of representing 
time. 

Structure that holds the components of a 
calendar time (see below). 

The tm structure contains the following components at least (it may con­
tain additional components): 

int tm_sec; /* seconds after the minute [0, 59] */ 
int tm_min; /* minutes after the hour [0, 59] */ 
int tm_hour; /* hours since midnight [0, 23] */ 
int tm_mday; /* day of the month [1, 31] */ 
int tm_mon; /* months since January [0, 11] */ 
int tm_year; /* years since 1900 [ ] */ 
int tm_wday; /* days since Sunday [0, 6 ] */ 
int tm_ydaYi /* days since January 1 --[0, 365] */ 
int tm_isdst; /* daylight savings time flag */ 

The value of tm_isdt is positive if daylight savings time is in effect, zero if 
daylight savings time is not in effect. and negative if the information is not 
available. 



www.manaraa.com

The ANSI Runtime Library 

A.16.1 The clock () Function 

#include <time.h> 
clock_t clock( void ); 

473 

The clockO function returns the amount of processor time used by the 
program. To get the value in terms of seconds, divide the returned value 
by the macro CLK_TCK. The behavior of the clockO function is largely 
implementation defined. There is no precise definition for determining 
when the clock should start counting, and an implementation only needs 
to give its best approximation. If the processor time is not available, the 
clockO function returns -1 cast to the clock_t type. 

A.16.2 The time() Function 
#include <time.h> 
time_t time( time_t *timer ); 

The timeO function returns the implementation's best approximation of 
the calendar time. The encoding of the value is unspecified. If timer is 
not a null pointer, the calendar time is also assigned to the object that it 
points to. If the calendar time is unavailable, timeO returns -1. 

A.16.3 The mktime() Function 

#include <time.h> 
time_t mktime( struct tm *timeptr ); 

The mktimeO function converts a broken-down time in a tm structure 
into a calendar time of the same form returned by the timeO function. 
The values of tm_wday and tm"yday are ignored, and the values of the 
other fields are not restricted to the values shown in the earlier descrip­
tion of tm. In addition to returning a calendar time. mktimeO also sets 
the fields in the structure pointed to by timeptr to appropriate values. 
This means that if the original values are out of range, mktimeO forces 
them into the ranges listed above. mktimeO also assigns appropriate val­
ues to tm_wday and tm"yday. 

If mktimeO cannot calculate a returnable calendar time, it returns 
(time_t)-i. 

The following example shows how you might use the mktime 0 function to 
write a function that performs some loop for a specified number of min­
utes. 



www.manaraa.com

474 

#include <time.h> 

void do_for_x_minutes( x_minutes 
int x_minutes; 
{ 

struct tm when; 
time_t now, deadline; 

time( now); 
when = *localtime( now); 
when.tm_min += x_minutes; 
deadline = mktime( when ); 

/* Do foo() for x_minutes */ 

} 

while (difftime( time( 0 ), deadline) > 0) 
foo () ; 

Appendix A 

Note that the mktimeO function will work even if the expression, 

is greater than 59. 

A.16.4 The asctime () Function 
#include <time.h> 
char *asctime( const struct tm *timeptr ); 

The asctime () function converts the time represented by the structure 
pointed to by timeptr into a character string with the following form: 

Sun Sep 16 01:03:52 1973\n\0 

asctime 0 returns a pointer to the generated string. Subsequent calls to 
asctime 0 or ctime 0 may overwrite this string. 

A.16.S The ctime() Function 

#include <time.h> 
char *ctime( const time_t *timer ); 

The ctime 0 function converts the calendar time pointed to by timer to 
local time in the form of a character string. It is equivalent to: 

asctime( localtime( timer) ) 



www.manaraa.com

The ANSI Runtime Library 475 

A.16.6 The difftime () Function 
#include <time.h> 
double difftime( time_t time!, time_t timeO ); 

The difftime 0 function returns the difference time 1 - timeO, expressed 
in seconds. 

A.16.7 The gmtime () Function 
#include <time.h> 
struct tm *gmtime( const time_t *timer ); 

The gmtime 0 function converts the calendar time pointed to by timer 
into a broken-down time, expressed as Greenwich Mean Time (GMT). 
The gmtime 0 function returns a pointer to a structure containing the 
time components. If the GMT is not available, gmtime () returns a null 
pointer. Subsequent calls to gmtime () or 10 caltime 0 may point to the 
same static structure tm, which is overwritten by each call. 

A.16.8 The loealtime () Function 
#include <time.h> 
struct tm *localtime( const time_t *timer ); 

The localtime () function converts the calendar time pointed to by timer 
into a broken-down time, expressed as local time. The localtimeO func­
tion returns a pointer to a structure containing the time components. 
Subsequent calls to gmtime 0 or localtime 0 may point to the same static 
structure tm, which is overwritten by each call. 

A.16.9 The strftime() Function 
#include <time.h> 
size t strftime( char *s, size_t maxsize, 

const char *format, 
const struct tm *timeptr ); 

The str/time 0 function enables you to construct a string containing infor­
mation from the structure pointed to by timeptr. The format of 
str/timeO is similar to print/O, where the first argument is a format string 
that can contain text as well as format specifiers. In this case, however, 
the format specifiers are replaced with particular data from the timeptr 
structure. No more than max_size characters will be placed in the result­
ing string pointed to by s. 



www.manaraa.com

476 Appendix A 

The format specifiers, and what they are replaced by, are listed int Table 
A-9. The exact value and format of each specifier depends on the par­
ticular implementation and the values stored in the structure pointed to 
by timeptr. 

Format 
Specifier 

%a 

%A 

%b 

%B 

%c 

%d 

%H 

%1 

%j 

%m 

%M 

%p 

%S 

Meaning 

The abbreviated weekday name. 

The full weekday name. 

The abbreviated month name. 

The full month name. 

An appropriate date and time representa­
tion. 

The day of month as a decimal number 
(01 - 31). 

The hour (24-hour clock) as a decimal 
number (00 - 23). 

The hour (12-hour clock) as a decimal 
number (01 - 12). 

The day of the year as a decimal number 
(001 - 386). 

The month as a decimal number (01 -
12). 

The minute as a decimal number (00 -
59). 

Either AM or PM (or the equivalent in the 
local language). 

The second as a decimal number (00 -
59). 

Table A-g. Format Specifiers for the ctimeO Function. 
(continued on next page) 



www.manaraa.com

The ANSI Runtime Library 

Format 
Specifier 

%U 

%w 

%W 

%x 

%X 

%y 

%y 

%Z 

%% 

Meaning 

The week number of the year (Sunday be­
ing the first day of the week) as a decimal 
number (00 - 52). 

The weekday as a decimal number (0 - 6) 
- Sunday is O. 

The week number of the year (where 
Monday is the first day of the week) as a 
decimal number (00 - 52). 

An appropriate date representation. 

An appropriate time representation. 

The year (last two digits only) as a decimal 
number (00 - 99). 

The year (all four digits) as a decimal num­
ber. 

The time zone name, or no characters if 
no time zone exists. 

% 

Table A-g. Format Specifiers for ctimeO Function. 
(continued from preceding page) 

477 

If the total number of characters resulting from replacements is not more 
than maxsize, strftime 0 returns the number of characters written to the 
array pointed to by s (not including the terminating null character). Oth­
erwise, strftimeO returns zero and the contents of the s array are indeter­
minate. 



www.manaraa.com

Appendix B 

Syntax of ANSI C 

file: 

function definition: 



www.manaraa.com

Syntax of ANSI C 479 

declaration specifier: 

declarator: 

declaration: 



www.manaraa.com

480 Appendix B 

storage class specifier: 

type specifier: 

storage modifier: 

~~ 
volatile 



www.manaraa.com

Syntax of ANSI C 481 

structure or union specifier: 

struct member declaration: 

bit field declaration: 

-r---------.-~ constant ~ I • -\..:..I -jexpressionj -

'---.I declarator~ 

enum specifier: 



www.manaraa.com

482 Appendix B 

parameter type list: 

abstract declarator: 

f 

initialized declaration list: 



www.manaraa.com

Syntax of ANSI C 483 

Identifier: 

constant: 

_I floating-point 1 
1 constant 1 

_I integer 1 
1 constant 1 

. 1 enumeration 1 
1 constant 1 

_I character 1 
1 constant 1 

floating-point constant: 



www.manaraa.com

484 Appendix B 

fractional constant: 

exponent part: 

integer constant: 

character constant: 



www.manaraa.com

Syntax of ANSI C 

escape sequence: 

note: a = octal digit 
h = hex/decimal digit 

string literal: 

expression: 

primary expressionj---T----;===.:=:;---r----T ... 

expression 

485 



www.manaraa.com

486 Appendix B 

primary expression: 

identifier 

postfix expression: 

expression 

++r---------------------------~~ 

argument expression list: 

r:r:£:tl-



www.manaraa.com

Syntax of ANSI C 487 

unary operator: 

cast expression: 

type L-I abstract L-r)\..--
specifier I -- declarator I -- \.!J --



www.manaraa.com

488 Appendix B 

binary operator: 
(In order of deoreaslng preced8_nc_e":')_r-+_C 



www.manaraa.com

Syntax of ANSI C 489 

assignment operator: 

statement: 



www.manaraa.com

490 Appendix B 

labeled statement: 

compound statement: 

-<D ~<D-

~deClaration~ ~ statement IJJ 

expression statement: 

--...-----.---1G)---L:I expressionJ 

selection statement: 



www.manaraa.com

Syntax of ANSI C 491 

Iteration statement: 

Jump statement: 

preprocessor directive: 



www.manaraa.com

492 Appendix B 

If section: 

ff group: 

ellf group: 

else group: 



www.manaraa.com

Syntax of ANSI C 493 

endi! line: 

control line: 

#~------------------------------------------------------.-~ 



www.manaraa.com

494 Appendix B 

preprocessing token: 

stringized token: 

macro parameter: 

concatenated token: 

pre~~~~~ssorl-__ • 



www.manaraa.com

Appendix C 

Implementation Limits 

Every C compiler imposes certain limitations upon the types of programs 
it will compile, such as the maximum length of variable names and the 
maximum length of lines in source files. These constraints are called 
translation limits because they concern how the compiler translates 
source text. There are also numerical limits, which concern the mini­
mum and maximum values that can be represented by variously-typed 
objects. For both types of limits, the ANSI Standard defines minimum 
values. An ANSI-conforming C compiler must support at least these 
minimum values, but is free to exceed these limitations. In fact, ANSI 
recommends that implementations avoid imposing any limits wherever 
possible. Your compiler documentation should list all limits. 

C.1 Translation Limits 
An ANSI-conforming compiler must at least support the following: 

• 15 nesting levels of compound statements, iteration control struc­
tures, and selection control structures 

• 6 nesting levels in conditional compilation 

• 12 pointer, array, and function declarators modifying a basic type 
in a declaration 



www.manaraa.com

496 Appendix C 

• 127 expressions nested by parentheses 

• 31 significant initial characters in an internal identifier or macro 
name 

• 6 significant initial characters in an external identifier 

• 5 11 external identifiers in one source file 

• 127 identifiers with block scope in one block 

• 1024 macro names simultaneously defined in one source file 

• 31 parameters in one function definition or call 

• 31 parameters in one macro definition or invocation 

• 509 characters in a source line 

• 509 characters in a string literal (after concatenation) 

• 32767 bytes in an array or structure 

• 8 nesting levels for #included files 

• 257 case labels in a switch statement 

C.2 Numerical Limits 
The ANSI Standard defines the mimimum range of values that each sca­
lar type of object must be able to represent. For integral objects, the 
low-end and high-end of these ranges are recorded in macro constants 
that are defined in the limits.h header file. Implementations may, of 
course, support larger ranges. 

For floating-point types, the ANSI Standard defines a number of macros 
that describe an implementation's floating-point representation. These 
macros are defined in the float.h header file. 

C.2.1 Sizes of Integral Types 

Table D-1lists the macro names defined in limits.h, their meanings, and 
their minimum value for ANSI-conforming implementations: 



www.manaraa.com

Implementation Limits 497 

Macro Name Value Meaning 

CHAR BIT 8 minimum number of bits for smallest 
object that is not a bit field (i.e., a 
byte) 

SCHAR MIN -127 minimum value for an object of type 
signed char 

SCHAR_MAX +127 maximum value for an object of type 
signed char 

UCHAR_MAX 255U maximum value for an object of type 
unsigned char 

CHAR MIN * minimum value for an object of type 
char 

CHAR MAX * maximum value for an object of type 
char 

SHRT MIN -32767 minimum value for an object of type 
short int 

SHRT_MAX +32767 maximum value for an object of type 
short int 

USHRT_MAX 65535U maximum value for an object of type 
unsigned short int 

INT MIN -32767 minimum value for an object of type int 

INT MAX +32767 maximum value for an object of type 
int 

UINT_MAX 65535U maximum value for an object of type 
unsigned int 

LONG_MIN -2147483647 minimum value for an object of type 
long int 

LONG_MAX +2147483647 maximum value for an object of type 
long int 

ULONG_MAX 4294967295U maximum value for an object of type 
unsigned long int 

* If chars are signed by default, the value of CHAR_MIN should be the same as that 
of SCHAR MIN and the value of CHAR MAX should be the same as that of 
SCHAR_MAX. If chars are unsigned by defuult, the value of CHAR_MIN should be 
zero, and the value of CHAR_MAX should be the same as that of UCHAR_MAX. 



www.manaraa.com

498 Appendix C 

C.2.2 Characteristics of Floating-Point Types 
The ANSI Standard defines the characteristics of floating-point types in 
terms of a model that describes a representation of floating point num­
bers and values that provide information about an implementation's float­
ing-point arithmetic. We recommend that you read the ANSI Standard 
for a detailed discussion of this model. In this section, we present infor­
mation about the limits for floating-point objects. 

For any floating-point object, there are four limits: 

max The largest positive value that can be represented. 

min The largest negative value that can be represented. 

epsilon The minimum positive number, x, such that: 
1.0 + x 1= 1.0 

precis/on The number of decimal digits of precisions. 

Each ANSI -conforming compiler provides values for these four limits in 
names. These names, however, need not be constants - they can also 
represent expressions evaluated at runtime. Table D-l lists the names 
for each of the floating-point types and the minimum values that an 
ANSI-conforming compiler must support. Compilers are free to support 
values greater in magnitude (absolute value) to those shown, with the 
same size. 

float 
double 
long double 

float 
double 
long double 

float 
double 
long double 

float 

Maximum Value 

FLT MAX 
OBL MAX 
LOBL MAX 

Minimum Value 

FLT MIN 
OBL MIN 
LOBL_MIN 

Epsilon 

FLT EPSILON 
OBL_EPSILON 
LOBL_EPSILON 

Precision 

1e+37 
1e+37 
1e+37 

1e-37 
1e-37 
1e-37 

1e-5 
1e-5 
1e-5 

6 



www.manaraa.com

Implementation Limits 

double 
long double 

6 
6 

499 



www.manaraa.com

Appendix D 

Differences Between the ANSI 
and K&R Standards 

This appendix summarizes the differences between the K&R standard 
and the ANSI Standard. The references listed in each section point to 
other parts of this book where you can find more information about the 
topic. 

D.1 Source Translation Differences 
The differences listed in this section relate to the lexical analysis stage of 
compilation. 

0.1.1 Name Length 

ANSI: 

K&R: 

Compilers must support internal names of at least 31 
characters and external names of at least 6 characters. 

Compilers must support internal names of at least 8 char­
acters; external names may be shorter. 

Reference: Section 2.3.2 Names; Section 7.3 Global Variables 



www.manaraa.com

ANSIIK&R Differences 501 

0.1.2 Continuation Character 

ANSI: 

K&R: 

The continuation character may be used to carry names 
as well as string literals to the next line. 

The continuation character may only be used to continue 
string literals. 

Reference: Section 2.6.1 Continuation Character 

0.1.3 String Concatenation 

ANSI: 

K&R: 

Supports this new feature that causes the compiler to 
concatenate adjacent string literals into a single string. 

Does not support this feature. 

Reference: Box 6-3: String Concatenation 

0.1.4 Trigraph Sequences 

ANSI: 

K&R: 

Supports trigraph sequences for entering characters not 
available on some keyboards. 

Does not support trigraph sequences. 

Reference: Box 3-3: Trigraph Sequences 

0.1.5 Alert and Vertical Tab Escape Sequences 

ANSI: 

K&R: 

Requires compilers to support \a (alert) and \v (vertical 
tab) escape sequences. 

Does not require compilers to support \a and \ v. 

Reference: Section 3.3.1 Escape Character Sequences 



www.manaraa.com

502 Appendix 0 

0.1.6 Hexadecimal Escape Sequences 

ANSI: Supports escape sequences of the form: 

\xhhh 

where the h's are hexadecimal digits. 

K&R: Does not support hexadecimal escape sequences. 

Reference: Section 3.3.1 Escape Character Sequences 

0.2 Data Type Differences 
The entries in this section cover differences in data types. 

0.2.1 signed Type Specifier 

ANSI: 

K&R: 

Supports the new keyword signed, which explicitly 
makes an integral type signed. 

Does not support the signed keyword. 

Reference: Box 3-1: signed Qualifier 

0.2.2 long double Type 

ANSI: Supports long double type. 

K&R: Does not support long double type. 

Reference: Box 3-4: long double Type; Section 3.9.4 Mixing Float­
ing-Point Values 

0.2.3 unsigned short, unsigned long, and unsigned 
char Types 

ANSI: 

K&R: 

Explicitly requires C compilers to support these types. 

Implies that these types are not legal. 

Reference: Section 3.2.1 Unsigned Integers; Section 3.8 Typedefs 



www.manaraa.com

ANSI/K&R Differences 503 

0.2.4 The void Type 

ANSI: Included as a new type, an object of which cannot be 
used. Pointers to void may be converted to pointers of 
any other type object. 

K&R: Not supported at all in the original version. 

Reference: Section 3.12 The void Type; Box 7-6: Generic Pointers 

0.2.5 Enumeration Types 

ANSI: 

K&R: 

Supported as integer type. 

Not supported in the original document, though added in 
a later draft. 

Reference: Section 3.11 Enumeration Types 

0.2.6 Byte Length 

ANSI: A byte must be at least 8 bits long. 

K&R: Bytes have unspecified size. 

Reference: Section 3.2 Different Types of Integers 

0.2.7 Minimum Ranges for Integral Types 

ANSI: 

K&R: 

Imposes ranges that must be met for each type. 

Does not impose ranges, but lists typical sizes. 

Reference: Section 3.2 Different Types of Integers; Appendix 
D-" Implementation Limits" 

0.2.8 Unsigned Constants 

ANSI: 

K&R: 

Allows you to append a u or U to an integral constant to 
make it unsigned. 

Does not support unsigned constants. 

Reference: Box 3-2: unsigned Constants 



www.manaraa.com

504 Appendix 0 

0.2.9 "8" and "9" Not Allowed in Octal Constants 

ANSI: 

K&R: 

Does not allow the digits 8 and 9 to be used in an octal 
constant. 

Allows the use of 8 and 9 (which have octal values 10 
and 11). 

Reference: Section 3.3 Different Kinds of Integer Constants 

0.2.10 float and long double Constants 

ANSI: 

K&R: 

Allows you to append an f or F to a floating-point con­
stant to give it type float, or an I or L to give it type long 
double. 

Does not support float and long double constants. 

Reference: Box 3-5: float and long double Constants 

0.2.11 Type of Integer Constants 

ANSI: 

K&R: 

Has defined rules for determining type. 

Rules for type determination are vague. 

Reference: Section 3.3 Different Kinds of Integer Constants 

0.2.12 Conversion Rules for Mixing signed and 
unsigned Types 

ANSI: 

K&R: 

Uses value-preserving rules. 

Uses sign-preserving rules. 

Reference: Box 3-7: Unsigned Conversions 



www.manaraa.com

ANSI/K&R Differences 505 

D.3 Statement Differences 
There is only one siginificant difference concerning control flow state­
ments. 

0.3.1 Controlling Expression of a switch 
Statement 

ANSI: 

K&R: 

Allows the controlling expression of a switch statement to 
have any integral type. 

States that the controlling expression must have type into 

Reference: Section 4.2.1 Syntax of a switch Statement 

D.4 Expression Differences 
This section lists several differences involving the way expressions are 
evaluated. 

0.4.1 Unsigned Conversions 

ANSI: 

K&R: 

Uses value-preserving rules. 

Uses sign-preserving rules. 

Reference: Box 3-7 Unsigned Conversions 

0.4.2 Unary Plus Operator 

ANSI: 

K&R: 

Supports a unary plus operator to inhibit regrouping of 
subexpressions. 

Does not support a unary plus operator. 

Reference: Box 5-1: Unary Plus Operator 



www.manaraa.com

506 Appendix D 

0.4.3 Float Expressions 

ANSI: 

K&R: 

Does not require the compiler to convert all float oper­
ands to double. 

Requires conversion of all float operands to double. 

Reference: Section 3.9.4 Mixing Floating-Point Values 

0.4.4 Shifting by a long int and unsigned int 

ANSI: 

K&R: 

States that the type of the shift count does not affect the 
type of the left-hand operand. 

Implies that shifting by a long int or unsigned int forces 
the compiler to convert the left operand to a long int or 
unsigned int, respectively. 

Reference: Section 5.9.1 Shift Operators 

0.4.5 Structure Assignment 

ANSI: 

K&R: 

Allows a structure to be assigned to a structure variable, 
provided that the two operands share the same structure 
type. 

Does not support structure assignment. 

Reference: Box 8-3: Structure Assignment 

0.4.6 Passing Structures as Arguments 

ANSI: 

K&R: 

Supports passing structures as function arguments. 

Does not allow structures to be passed as function argu­
ments. 

Reference: Section 8.1.8 Passing Structures 



www.manaraa.com

ANSI/K&R Differences 507 

0.4.7 Pointers to Functions 

ANSI: 

K&R: 

Allows you to omit the dereferencing operator when in­
voking a function through a pointer to a function. If pf is 
a function, then, 

pf(); 

is the same as: 

(*pf) () 

Implies that the dereferencing operator is required. 

Reference: Section 9.3.3 Calling a Function Using Pointers 

D.5 Storage Class and Initialization 
Differences 

The ANSI Standard includes several extensions to storage classes and in­
itializa tions. 

0.5.1 Function Prototypes 

ANSI: 

K&R: 

Supports a new feature that allows you to declare the 
number and type of arguments to a function defined 
elsewhere. Prototyping enables the compiler to perform 
argument type-checking. 

Not supported. 

Reference: Box 9-1: Function Prototypes 

0.5.2 The canst Storage-Class Modifier 

ANSI: 

K&R: 

Supports const, which indicates that the object's value 
may not be changed. 

Does not support const. 

Reference: Box 7-4: The const Storage-Class Modifier 



www.manaraa.com

508 Appendix 0 

0.5.3 The vo/atile Storage-Class Modifier 

ANSI: 

K&R: 

Supports volatile, which indicates that the object's value 
can change in ways that the compiler cannot predict. 

Does not support volatile. 

Reference: Box 7-5: The volatile Storage-Class Modifier 

0.5.4 Definitions vs. Allusions 

ANSI: 

K&R: 

Uses the presence or absence of an initializer to deter­
mine whether a declaration is a definition or an allusion. 

Uses the presence or absence of the extern specifier to 
determine whether a declaration is a definition or an al­
lusion. 

Reference: Section 7.3.1 Definitions and Allusions; Box 7-3 Non­
ANSI Strategies for Declaring Global Variables 

0.5.5 Initializing Automatic Arrays and Structures 

ANSI: Permitted. 

K&R: Not Permitted. 

Reference: Section 6.3 Initializing Arrays; Box 6-1 Initialization of 
Arrays; Section 8.1.1 Initializing Structures 

0.5.6 Scope of Function Arguments 

ANSI: 

K&R: 

Arguments declared as function parameters have the 
same scope as objects declared in the function's top-
level block. 

Function arguments may be hidden by declarations of 
the same name in the top-level block. 

Reference: Box 7-1: Scope of Function Arguments 



www.manaraa.com

ANSI/K&R Differences 509 

0.5.7 struct and union Name Spaces 

ANSI: 

K&R: 

Each structure and union has its own name space, which 
means that fields in different structures or unions can 
have the same name without conflict. 

Places all structure and union fields in the same name 
space. 

Reference: Box 8-1: struct and union Name Spaces 

0.5.8 Initialization of Union Members 

ANSI: Supported - Initializes the first member of the union. 

K&R: Not Supported. 

Reference: Box 8-4: Initializing Unions 

D.6 Preprocessor Differences 
The preprocessor defined by the ANSI Standard differs substantially 
from the preprocessor described by K&R. 

0.6.1 Formatting Preprocessor Lines 

ANSI: 

K&R: 

Requires the pound sign to be the first non-space charac­
ter on a line. 

Requires the pound sign to be the first character on a 
line. 

Reference: Box 10-1: Flexible Formatting of Preprocessor Lines 

0.6.2 Recursive Macro Definitions 

ANSI: 

K&R: 

Prevents infinite recursion of a macro by inhibiting the 
expansion of a macro name in its own definition. 

Provides no mechanism to avoid infinite recursion of a 
macro. 

Reference: Box 10-5: Using a Macro Name in Its Own Definition 



www.manaraa.com

510 Appendix D 

0.6.3 Redefining Macro Names 

ANSI: 

K&R: 

Requires an intervening #undef of the macro name if the 
redefinition is different from the current definition. 

Does not require an intervening #undef. 

Reference: Section 10.1.2 Removing a Macro Definition 

0.6.4 String Producer 

ANSI: 

K&R: 

Supports a new preprocessor operator (#) that surrounds 
its argument with quotes when it expands. 

Does not support the string-producing operator. 

Reference: Box 10-8: String Producer 

0.6.5 Built-In Macros 

ANSI: 

K&R: 

Requires implementations to define five built-in macros: 
_LINE_, _FILE_, _TIME_, DATE_, 
_STDC_. 

Does not require implementations to define any built-in 
macros (nor does it prohibit them from doing so). 

Reference: Section 10.1.4 Built-In Macros 

0.6.6 Token Pasting 

ANSI: 

K&R: 

Supports a new preprocessor operator (##) that pastes 
two preprocessor tokens. 

Does not support the paste operator. 

Reference: Box 10-9: Token Pasting 

0.6.7 The #elif Oirective 

ANSI: Supports #elif. 

K&R: Does not support #elif. 

Reference: Section 10.2 Conditional Compilation 



www.manaraa.com

ANSIIK&R Differences 

0.6.8 The defined Operator 

ANSI: 

K&R: 

Supports the defined preprocessor operator. 

Does not support defined. 

Reference: Section 10.2.1 Testing Macro Existence 

0.6.9 The #error Directive 

511 

ANSI: Supports #error, which enables you to output error mes­
sages during the preprocessing stage of compilation. 

K&R: Does not support #error. 

Reference: Box 10-10: The #error Directive 

0.6.10 The #pragma Directive 

ANSI: 

K&R: 

Supports #pragma, which allows implementations to add 
their own preprocessing directives. 

Does not support #pragma. 

Reference: Box 10-11: The #pragma Directive 



www.manaraa.com

Appendix E 

Reserved Names 

The C language, as defined by the ANSI Standard, contains a number of 
reserved words and names that you should not use as private variable 
names. The reserved words fall into several categories: 

• Keywords - You may not use keywords for names of objects. 

• Runtime Function Names - You should avoid using function 
names, except when you want to write your own version of a 
standard function or macro. 

• Macro Names - The runtime library header files contain defini­
tions for many constant names. You should avoid using these 
names for variables. 

• Type Names - Some of the header files define types (with 
typedefs) that are applied to the arguments or the function return 
type. 

• Preprocessor Command Names - In general, the preprocessor 
names do not create conflicts because they must be preceded by 
a pound sign, which makes their meaning unambiguous. How­
ever, you cannot write something like: 

#define define 

Table E-l lists all of these reserved names. For macros and functions, 
the table also shows where they are defined. Although it is possible to 
avoid naming conflicts by not including the header file in which a re­
served name is defined, this is a dangerous practice because you may 



www.manaraa.com

Reserved Words 513 

need to include the header file at a later date. We recommend that you 
avoid using these names for private variables. 

In addition to the names listed in Table B-1. you should also consider all 
names beginning with an underscore to be reserved for system use. Fi­
nally. ANSI has reserved all names beginning with two underscores. or an 
underscore followed by an uppercase letter. for future use. 

_DATE_ macro defined by the implementation 
_FILE_ macro defined by the implementation 
_IOFBF macro defined by the implementation 
_IOLBF macro defined by the implementation 
_IONBF macro defined by the implementation 
_LINE_ macro defined by the implementation 
_STDC_ macro defined by the implementation 
_ TIME_ macro defined by the implementation 
abort function defined in assert.h 
abs function defined in stdlib.h 
acos 
asctlme 
asin 
assert 
atan 
atan2 
atexit 
atof 
atoi 
atol 
auto 
break 
bsearch 
BUFSIZ 
calloc 
case 
cell 
CHAR_BIT 
CHAR_MAX 
CHAR_MIN 
clearerr 
CLK_TCK 
clock 
clock_t 
const 
continue 
cos 
cosh 
ctlme 

function defined in math.h 
function defined in tlme.h 
function defined in math.h 
macro defined in assert.h 
function defined in math.h 
function defined in math.h 
function defined in stdlib.h 
function defined in stdlib.h 
function defined in stdlib.h 
function defined in stdlib.h 
keyword (storage class specifier) 
keyword (statement) 
function defined in stdlib.h 
macro defined in stdlo.h 
function defined in stdlib.h 
keyword (label) 
function defined in math.h 
macro defined in limits.h 
macro defined in limits.h 
macro defined in limits.h 
function defined in stdio.h 
macro defined in time.h 
function defined in tlme.h 
type defined in time.h 
keyword (storage class modifier) 
keyword (statement) 
function defined in math.h 
function defined in math.h 
function defined in tlme.h 



www.manaraa.com

514 

DBl_MANT _DIG 
DBl_DIG 
DBl_EPSllON 
DBl_MIN_EXP 
DBl_MIN 
DBl_MIN_10_EXP 
DBl_MAX_EXP 
DBl_MAX 
DBl_MAX_10_EXP 
default 
defined 
difftime 
dlv_t 
do 
double 
EDOM 
else 
enum 
EOF 
ERANGE 
errno 
exit 
exp 
extern 
fabs 
fclose 
feof 
ferror 
fflush 
fgetc 
fgetpos 
fgets 
FilE 
float 
floor 
Fl T _EPSilON 
FlT_DIG 
Fl T _MANT _DIG 
FlT_MAX 
Fl T _MAX_EXP 
FlT_MAX_10_EXP 
FlT_MIN 
Fl T _MIN_EXP 
Fl T _MIN_1 O_EXP 
FlT_RADIX 

Appendix E 

macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
keyword (label) 
preprocessing operator 
function defined in time.h 
type defined in stdlib.h 
keyword (statement) 
keyword (type specifier) 
macro defined in float.h 
keyword (statement) 
keyword (type specifier) 
macro defined in std/o.h 
macro defined in float.h 
macro defined in stddef.h 
function defined in stdlib.h 
function defined in math.h 
keyword (storage class specifier) 
function defined in math.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in std/o.h 
function defined in stdio.h 
type defined in stdio.h 
keyword (type specifier) 
function defined in math.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 



www.manaraa.com

Reserved Words 

FLT_ROUNDS 
fmod 
fopen 
for 
fpos_t 
fprlntf 
fputc 
fputs 
fread 
free 
freopen 
frexp 
fscanf 
fseek 
fsetpos 
ftell 
fwrite 
getc 
getchar 
getenv 
gets 
gmtime 
goto 
HUGE_VAL 
if 
int 
I NT_MAX 
INT_MIN 
isalnum 
isalpha 
iscntrl 
isdigit 
isgraph 
islower 
isprint 
ispunct 
iss pace 
isupper 
isxdigit 
jmp_buf 
L_tmpnam 
labs 
LDBL_DIG 
LDBL_EPSILON 
LDBL_MANT _DIG 

macro defined in float.h 
function defined in math.h 
function defined in stdio.h 
keyword (statement) 
type defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdlib.h 
function defined in stdio.h 
function defined in math.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdlib.h 
function defined in stdio.h 
function defined in stdlib.h 
keyword (statement) 
macro defined in math.h 
keyword (statement) 
keyword (type specifier) 
macro defined in limits.h 
macro defined in limits.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
function defined in ctype.h 
type defined in setjmp.h 
macro defined in stdio.h 
function defined in math.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 

515 



www.manaraa.com

516 

LDBL_MAX 
LDBL_MAX_EXP 
LDBL_MAX_10_EXP 
LDBL_MIN 
LDBL_MIN_EXP 
LDBL_MIN_10_EXP 
Idexp 
Idiv 
Idiv_t 
loealtime 
log 
log10 
long 
longjmp 
LONG_MAX 
LONG_MIN 
main 
malloe 
memehr 
mememp 
memepy 
memmove 
memset 
mktime 
modf 
NDEBUG 
NULL 
offsetof 
OPEN_MAX 
perror 
pow 
printf 
ptrdiff t 
pute 
putehar 
puts 
qsort 
raise 
rand 
RAND_MAX 
realloe 
register 
remove 
rename 
return 

macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
macro defined in float.h 
function defined in math.h 
function defined in stdlib.h 
type defined in stdlib.h 
function defined in time.h 
function defined in math.h 
function defined in math.h 
keyword (type specifier) 
function defined in setjmp.h 
macro defined in limits.h 
macro defined in limits.h 

Appendix E 

function defined by the implementation 
function defined in stdlib.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in time.h 
function defined in math.h 
macro defined in assert.h 
macro defined in stddef.h 
macro defined in stddef.h 
macro defined in stdio.h 
function defined in stdio.h 
function defined in math.h 
function defined in stdio.h 
type defined in stddef.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in stdlib.h 
function defined in signa/.h 
function defined in stdlib.h 
macro defined in stdlib.h 
function defined in stdlib.h 
keyword (storage class specifier) 
function defined in stdio.h 
function defined in stdio.h 
keyword (statement) 



www.manaraa.com

Reserved Words 

rewind 
SCHAR_MAX 
SCHAR_MIN 
SEEK_CUR 
SEEK_END 
SEEK_SET 
setbuf 
setjmp 
setloeale 
setvbuf 
short 
SHRT_MAX 
SHRT_MIN 
sig_atomle_t 
SIG_DFL 
SIG_ERR 
SIG_IGN 
SIGABRT 
SIGFPE 
SIGILL 
SIGINT 
signal 
signed 
SIGSEGV 
SIGTERM 
sin 
sinh 
slze_t 
sizeof 
sprintf 
sqrt 
srand 
sseanf 
static 
stderr 
stdin 
stdout 
streat 
strehr 
stremp 
streoll 
strepy 
strespn 
strerror 
strftime 

function defined in stdio.h 
macro defined in Iimits.h 
macro defined in Iimlts.h 
macro defined in stdio.h 
macro defined in stdlo.h 
macro defined in stdio.h 
function defined in stdio.h 
function defined in setjmp.h 
function defined in loca/e.h 
function defined in stdio.h 
keyword (type specifier) 
macro defined in Iimlts.h 
macro defined in Iimits.h 
type defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
macro defined in signal.h 
function defined in signal.h 
keyword (type specifier) 
macro defined in signal.h 
macro defined in signal.h 
function defined in math.h 
function defined in math.h 
type defined in stddef.h 
keyword (operator) 
function defined in stdio.h 
function defined in math.h 
function defined in stdlib.h 
function defined in stdio.h 
keyword (storage class specifier) 

517 

file pointer defined by the implementation 
file pointer defined by the implementation 
file pointer defined by the implementation 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in strlng.h 
function defined in strlng.h 
function defined in tlme.h 



www.manaraa.com

518 

strlen 
strncat 
strncmp 
strncpy 
strpbrk 
strrchr 
strspn 
strstr 
strtod 
strtok 
strtol 
strtoul 
switch 
system 
tan 
tanh 
time 
time_t 
tm 
TMP_MAX 
tmpfile 
tmpnam 
tolower 
toupper 
typedef 
UCHAR_MAX 
UINT_MAX 
ULONG_MAX 
ungetc 
unsigned 
USHRT_MAX 
va_arg 
va_end 
va_list 
va_start 
vfprintf 
void 
volatile 
vprintf 
vsprintf 
while 

function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
function defined in string.h 
keyword (statement) 
function defined in stdlib.h 
function defined in math.h 
function defined in math.h 
function defined in time.h 
type defined in time.h 
type defined in time.h 
macro defined in stdio.h 
function defined in stdio.h 
function defined in stdio.h 
function defined in ctype.h 
function defined in ctype.h 
keyword (type specifier) 
macro defined in limits.h 
macro defined in limits.h 
macro defined in limits.h 
function defined in stdio.h 
keyword (type specifier) 
macro defined in limits.h 
macro defined in stdarg.h 
function defined in stdarg.h 
type defined in stdarg.h 
macro defined in stdarg.h 
function defined in stdio.h 
keyword (type specifier) 

Appendix E 

keyword (storage class modifier) 
function defined in stdio.h 
function defined in stdio.h 
keyword (statement) 

Table E-l. Reserved Names. 



www.manaraa.com

Appendix F 

C Interpreter Listing 

This appendix contains the listing for the C interpreter that we described 
in Chapter 12. It is written with good software engineering features and 
can be built using make. If you would like a floppy containing the source, 
write to Springer-Verlag. If you make any changes that you would like to 
share with others, send them to Darnell/Margolis c/o Springer-Verlag. 



www.manaraa.com

520 Appendix F 

File: lex.h Page 522 

File: sym.h Page 523 

File: cint.h Page 525 

File: token_st.h Page 527 

File: declare.c Page 528 
array decl .•.•...•...........•.......•....••••.. 529 
declare .......•••.•••......•......•••......•...• 529 
pointer_decl .•....•...••.............•....••••.. 528 

File: expr.c Page 532 
arg_list ..••••.•••.•••...•..•••...•••••••.•••... 532 
expression •.••..•....•......••.•..•••.••••.•••.. 541 
inc_value ...•..•••..••..•••..•.••..••....••.••.. 534 
post op ...•...•....•••....••.••...•..•....•.••.. 538 
precedence ...•...••..•......••..••••••.....••.•• 535 
primary •••...•••.•.•••...•.••.••..•.•••••.•.••.. 539 
push_args •.•.......•..........•...•.•..•........ 533 
unary_expression ........•...................••.. 536 
user_arg_list •..•..•............••...•...•....•. 534 

File: lex.c Page 544 
builtin function ........•••.•......•......••..•• 546 
get builtin func name •.••.•..........•....••...• 547 
get=builtin=func~tr .•...••••.•......•....•••.•• 547 
keyword ...••••.•••.•••..•.•..•..••••••....•.••.. 545 
lexO ......•.......•.•••....•.......•••..•...••.. 548 
lex_get •.•...........•...•••......•........••••. 547 
lex unget .••••....•.•...............•..........• 547 
strIng char ..•.......•...••.•.....•••......••... 547 
token_name ••••.......•.....•......•.......••••.. 545 

File: main.c 
call_main 

Page 

main ..............•..................•.......... 
next_file ....................•.....••........... 
put""prompt ...•..•............................... 
stash_file ........••••.....•.................... 

553 
553 
554 
554 
554 
553 

File: stmt.c Page 556 
check_semicolon ....••.....•................•.... 556 
statement .........•..................•....••.... 556 

File: sym.c Page 560 
add_sym_type .................................... 567 
enter scope •........•.......................•... 560 
first~aram ........•.......•.................... 568 
get frame size ...............•.......•.....•.... 561 
get=func_start ....•................••........... 569 
get_func_type ..............•.................... 569 
get_sym_frame_offset ............................ 569 
get_sym_name .................................... 567 
get_sym_storage ................................. 569 
get_sym_type .................................... 568 
get sym type desc ............................... 568 
get=type_desc_next .............................. 568 
get type desc type ........................•..... 568 
leave_scope .-: •......................•........... 561 
make_list ...........................•........... 561 
next""param ........................••••......•... 568 



www.manaraa.com

C Interpreter Listing 521 

print_array_type ................•••..•.•••.....• 565 
print""'pointer_type ...................•.......... 565 
print sym ...............................•....... 566 
print-type •.....................•.........•..... 565 
scope=level ..................................... 560 
set func start ..................•............... 569 
set-func-sym .................................... 561 
set=func=type ................................... 569 
set_sym_frame_offset ............................ 569 
set_sym_storage ................................. 569 
set sym type .........................•.......... 568 
sym -allocate .........................•.......... 562 
sym-arg allocate ................................ 563 
sym=declaring ................................... 560 
sym enter ....................................... 563 
sym=find ........................................ 564 
sym_list ........................................ 567 
sym table ......................•................ 562 
type_desc_size .................................. 562 
type_name ....................................... 565 

File: token st.c Page 570 
add-to token stream ............................. 571 
bump lIne coi:i'nt ................................. 570 
current_token ...................•............... 572 
err ............................................. 570 
qet if else .............•....................... 577 
get -if-exit ..•.................................. 577 
get=loop_body ................................... 578 
get loop exit ..........................•........ 577 
get=loop=increment .............................. 578 
get loop test ................................... 578 
get=next=token.....pc ............................... 575 
get_token""pc ...•................................ 575 
lex .....................•.•............•........ 575 
ne~t_token. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 572 
pr7nt_new7l.ne ................................... 573 
prl.nt strl.ng •................................... 572 
print-token list ................................ 574 
print-value-..................................... 573 
ptoken .......................................... 575 
set if else ..................................... 578 
set=if=exit ..................................... 577 
set loop body ................................... 578 
set-loop-exit ................................... 577 
set=loop=increment .............................. 578 
set_loop_test ................................... 578 
set_token""pc .................................... 575 
skip token ............................••........ 571 
tOken_list_head ...•............................. 575 
unlex ........................................... 571 
user_call ....................................... 576 
warn ............................................ 570 

File: memory.c Page 579 
assign memory to value .......................... 579 
assign-value to memory .......................... 581 
get_stack""'poInter ............................... 583 
memory .......................................... 579 
push value ...................................... 583 
set_stack.....p0inter ...............•......•........ 583 
static_alloc ..............•..................... 583 
type_size .......................••.............. 582 
user free ....................................... 583 
user=malloc .....................•..........•.... 583 



www.manaraa.com

522 Appendix F 

/* lex.h */ 
typedef enum lex_vals { 

LEX NULL, SYMBOL, CONSTANT, BUILTIN FUNCTION, 
RETURN, IF, ELSE, FOR, SWITCH, WHILE='a', STATIC, EXTERN, 
VOID, CHAR, SHORT, INT, LONG, DOUBLE, FLOAT, SIGNED, UNSIGNED, 
LSHIFT, RSHIFT, EQ, NEQ, GEQ, LEQ, INCREMENT, DECREMENT, 
SIZEOF, BREAK, CONTINUE, LIST, RUN, LAST TOKEN 

} LEX_TOKEN; -

Hf - STDC_ 
extern LEX_TOKEN lex( struct value* ); 
extern LEX_TOKEN lexO( struct value* ); 
extern LEX_TOKEN current_token(); 
felse 
extern LEX_TOKEN lex() ; 
extern LEX_TOKEN lexO () ; 
extern LEX_TOKEN current_token(); 
fendif 



www.manaraa.com

C Interpreter Listing 523 

1* sym.h 
* Author: P Darnell 
* 10/86 Created 
* Purpose: declare global types and variables used in Cint 
* and manipulated by sym.c 
*1 

typedef enum storage ( STACK, GLOBAL ) STORAGE; 

typedef enum 
T UNKNOWN, T DOUBLE, TINT, T PTR, T ARRAY, T STRUCT, T UNION, 
T=FUNC_PTR, T_FUNC, Tj'OID, T=CHAR, T_SHORT, T_LONG, TjhoAT 
VALUE_TYPE; 

typedef struct -private_type_desc ( 
struct -private_type_desc *next; 1* Pointer to next type descriptor *1 

1* Type of sym *1 VALUE_TYPE type; 
int size; 1* Size of arrays *1 

PRIVATE TYPE_DESC; 

typedef struct -private_sym 
STORAGE sym_storage; 1* storage class of sym *1 

PRIVATE TYPE DESC sym type; 1* type of sym *1 
Tnt - - sym offset; 1* memory offset of symbol *1 
char *sym-name; 1* pointer to text name of sym */ 
1* pointer to next-sym at same scope level *1 
struct -private_sym *sym_next; 

struct ( 
VALUE_TYPE func_type; 1* return type of function */ 
struct token *func start; 1* pointer to start of function body *1 
1* pointer to locally scoped symbols *1 
struct -private_sym **func_sym_list; 

) func_descriptor; 
_PRIVATE_SYM; 

tifdef SYM_OWNER 
typedef 
typedef 

telse 
typedef 
typedef 

tendif 

PRIVATE SYM SYM; 
_PRIVATE=TYPE_DESC TYPE_DESC; 

tif -extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 

STDC 

struct 
struct 

SYM-
int 
void 

void 
void 
void 
void 
SYM 
SYM 
void 
TYPE_DESC 
TYPE_DESC 
VALUE_TYPE 
VALUE_TYPE 
void 

char x[sizeof (struct -private_sym)];) SYM; 
char =x[sizeof (struct -private_type_desc)];) TYPE_DESC; 

*sym enter ( char* ); 
sym-find( char*, SYM**); 
sym-declaring( int ); 
sym-list () ; 
print sym( SYM *, int ); 
initjparam( SYM *); 
add-param( SYM *, SYM *); 

*next-param( ); 
*first-param( SYM *); 
add sym type( SYM*, VALUE TYPE ); 

*get-sym-type desc( SYM* )i 
*get-type dese next ( TYPE DESC* ); 
get-type-desc-type( TYPE-DESC* ); 
get-sym type (-SYM* ); -
set=sym=type( SYM *, VALUE_TYPE); 



www.manaraa.com

524 Appendix F 

extern void set_sym_frame_offset( 8YM *, int ); 
extern int get_sym_frame_offset( SYM * ) ; 
extern void set_sym_storage( SYM *, STORAGE ); 
extern STORAGE get_sym_storage( SYM * ); 
extern void set func start( SYM *, struct token *) ; 
extern struct token *get=func=start( SYM * ); 
extern void set_func_type( SYM *, VALUE_TYPE) ; 
extern VALUE_TYPE get_func_type( SYM * ); 
itelse 
extern SYM *sym_enterO; 
extern int sym findO; 
extern void sym=declaring(); 
extern void sym list (); 
extern void print sym 0 ; 
extern void inityaramO; 
extern void addyaramO; 
extern SYM *nextyaramO; 
extern SYM *firstyaramO; 
extern void add_sym_type 0 ; 
extern TYPE_DESC *get_sym_type_desc(); 
extern TYPE_DESC *get_type_desc_next(); 
extern VALUE_TYPE get_type_desc_type(); 
extern VALUE_TYPE get_sym_type 0; 
extern void set_sym_type 0 ; 
extern void set_sym_frame_offset(); 
extern int get_sym_frame_offset(); 
extern void set_sym_storage(); 
extern STORAGE get_sym_storage(); 
extern void set_func_start,O ; 
extern struct token *get_func_start(); 
extern void set_func_type(); 
extern VALUE_TYPE get_func_type(); 
itendif 



www.manaraa.com

C Interpreter Listing 

/* cint.h 
* Author: P Darnell 
* 10/86 Created 
* Purpose: declare global types and variables used in Cint 
*/ 

typedef char MEMORY; 
typedef int BUILTIN PTR; 
typedef int (*FUNC_PTR) (); 

typedef struct value 
VALUE TYPE type; /* Type of this value */ 
union-{ /* Value of this value */ 

int i[sizeof(double) / sizeof(int)]; 
int fix; 
double fIt; 
MEMORY *mptr; 
SYM *sym; 
struct value *ptr; 
BUILTIN_PTR builtin-ptr; 
struct { 

struct token *loop test; 
struct token *loop-body; 
struct token *loop-incrementi 
struct token *loop-exiti 
loop_descriptor; -

struct { 
struct token *if exit; 
struct token *if=else; 
if_descriptor; 

value; 
VALUE; 

struct 
char executing; /* True if executing program */ 
char using token stream; /* True if using internal token stream 
char saving_toke;_stream; /* True if saving tokens to stream */ 
char returning; /* True if return stmt executed */ 

525 

*/ 

char calc mode; /* True if new line is expression terminator */ 
char prompting; /* True if we want a statement prompt */ 
state; 

int lex_debug; 
int exp_debug; 
int stmt_debug; 

#define TRUE 
#define FALSE 

#ifndef NULL 
# define NULL 
#endif 

#if _STDC_ 
void 
void 
MEMORY 
void 

/* Set to true to get lex debug info */ 
/* Set to true to get expression debug info */ 
/* Set to true to get statement debug info */ 

1 
0 

assign memory to value ( VALUE *, MEMORY *, VALUE_TYPE); 
assign=value_to_memory( VALUE *, MEMORY *, VALUE_TYPE); 

*memory( SYM *); 
err ( char*, ); 



www.manaraa.com

526 

void 
char 
FUNC PTR 
struct token 
struct token 
struct token 
struct token 
void 
void 
void 
void 
#else 
void 
void 

struct token 
struct token 
struct token 
struct token 
void 
void 
void 
void 
MEMORY 
#endif 

warn ( char*, ) ; 

*get_builtin_func_name( BUILTIN_PTR ); 
get_builtin_func~tr( BUILTIN _PTR ); 

*get_loop_test ( 
*get loop body( 
*get=loop=increment( 
*get_loop_exit( 
set_loop_test ( 
set loop body( 
set=loop=increment( 
set_loop_exit( 

err () ; 
warn() ; 

struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 

*get builtin func name( ); 
get=builtin=func~tr( ); 

*get loop test(); 
*get-loop-body() ; 
*get-loop-increment(); 
*get-loop-exit() ; 
set-loop-test(); 
set-loop-body() ; 
set-loop-increment() ; 
set-loop-exit() ; 

*memory(); 

token 
token 
token 
token 
token 
token 
token 
token 

* 
* 
* 
* 
* , 
* , 
* , 
* , 

) ; 
) ; 
) ; 
) ; 
struct 
struct 
struct 
struct 

Appendix F 

token *); 
token * ); 
token * ); 
token * ); 



www.manaraa.com

C Interpreter Listing 

tifdef TOKEN OWNER 
typedef struct token 

struct token *tk next; 
LE~TOKEN tk-token; 
struct value tk-value; 
short tk=line; 
TOKEN; 

telse 

1* Pointer to next token *1 
1* Enumerated type of token *1 
1* value of token *1 
1* Source line of token definition *1 

typedef struct token { char filler; } TOKEN; 
tendif 

TOKEN *get_token-pc(); 
Hf STDC 
voidlPrint-Value( struct value * ); 
void print-token list( TOKEN * ); 
tendif - -

527 



www.manaraa.com

528 Appendix F 

/* declare.c 
* Author: P. Darnell 
* 9/86 Initial coding. 
* 11/86 Added arrays. 
* Purpose: To parse declarations, set the types of variables in the 
* symbol table, and allocate space for the variables in memory. 
*/ 

finclude Rlex.hR 
finclude "token st.h" 
finclude "sym.h" 
finclude "cint.h" 

/*================================================================ 
* Function: pointer decl(base type) 
* Purpose: parse and modify sYmbol table entry for pointer declarations. 
* Algorithm: 
* Recursively calls itself for each '*' prefix to symbol. 
* Symbol entry is only modified if we are not in execution mode. 
* Inputs: 
* base type - type that the pointer points at. 
* Result: pointer to sym entry for declared variable. 
*=======================~========================================*/ 

/* Note use of static storage class modifier to pointer decl to 
* restrict this function name to file scope. -
*/ 

static SYM *pointer decl(base type) 
VALUE_TYPE base_type; -

VALUE v; 
SYM *sym = NULL; 
LEX_TOKEN token; 

token = lex(&v); 
/* 

* Note use of cast (int) to suppress possible mismatch between int type of 
* the char constant '*' and enum type of token 
*/ 

if «int) token == '*') 
( 

/* Note use of recursion */ 
sym - pointer decl(base type); 
if (!state.executing) -

add_sym_type (sym, T_PTR); 
} 
else if (token == SYMBOL) 
( 

sym = v.value.sym; 
if (!state.executing) 

set_sym_type(sym, base_type); 

return symi 



www.manaraa.com

C Interpreter Listing 

/*================================================================ 
* Function: array decl(sym) 
* Purpose: parse array declaration and modify type entry for sym 
* Algorithm: 
* Recursively look for trailing [J's. 
* if array modifiers are found, modify sym type appropriately. 
* Inputs: 
* sym - pointer to sym entry to be modified by [J's 
* Result: 
* First token to follow 'J', or original token if no '[' found 
*================================================================*/ 

static LEX TOKEN array decl(sym) 
SYM *sym; -

LEX_TOKEN token; 
VALUE v; 

token = lex(&v); 
if «int) token == '[') 
{ 

/* Parse dimension size */ 
expression (0, &v, 0); 

/* Array declaration */ 

if «int) current token () !=' J') 
err ("Missing , ft in array declaration\n") ; 

/* Recursively look for more array modifiers */ 
token = array_decl(sym); 

if (!state.executing) 
{ 

if (v.type != TINT) 
err(nNon integral array size expression\n"); 

add_sym_type(sym, T_ARRAY, v.value.fix); 

return token; 

/*================================================================ 
* Function: declare {token, pvalue) 
* Purpose: external entry for declaration parsing 
* Algorithm: 
* Recursive descent. Enter symbols and modify type information if 
* we are not in execution mode. Otherwise just parse and do nothing. 
* Note: a speed up of execution could be seen if functions .had two 

529 

* token lists, one for executable code and one for declarations. That 
* way declarations would not slow down execution. 
* Inputs: 
* token - enum of last unparsed token. 
* pvalue - pointer to VALUE struct of last unparsed token. 
* Result: TRUE if declaration is found, FALSE if not. 
* Bug: Parens in declarations are not handled properly 
*================================================================*/ 

int declare(token, pvalue) 
LEX TOKEN token; 
VALUE *pvalue; 



www.manaraa.com

530 

VALUE val, *value(): 
SYM *sym, *first_arg: 

switch (token) 
{ 
case EXTERN: 
case STATIC: 

break: 
case CHAR: 

type = T CHAR: 
break: -

case SHORT: 
type = T SHORT: 
break: -

case LONG: 
type = T LONG: 
break: -

case INT: 
type = TINT: 
break: -

case FLOAT: 
type = T FLOAT: 
break: -

case DOUBLE: 
type = T DOUBLE: 
break: -

case VOID: 
type = T VOID: 
break; -

default: 
sym declaring(FALSE): 
return FALSE: 

sym_declaring(TRUE): 

/* Note use of do-while */ 
do 
{ 

/* Parse symbol with any pointer prefix modifiers */ 
sym = pointer decl(type): 
if (sym == NULL) 
{ 

err("Expected symbol\n", token); 
continue; 

token = array_decl(sym, NULL): 

if (!state.executing) 
sym_allocate(sym): 

if «int) token == '=') 
{ 

sym declaring(FALSE): 
expression (0, &val, 0): 
sym declaring(TRUE); 

/* Initialization */ 

Appendix F 

if (scope level() == 0 I I state. executing) 
assign value to memory(&val, memory(sym), 

- - - get type desc type(get sym type desc(sym»); 
token = (LEX_TOKEN) current_token (): - - - -



www.manaraa.com

C Interpreter Listing 531 

while «int) token ','I; 

if «int) token == '(') /* function declaration */ 
{ 

I 

set func type(sym, get sym type(sym»; 
set-sym type (sym, T FuNC);­
set-sym-storage(s~ GLOBAL); 
set-func sym(sym); /* register this sym as function symbol */ 
enter scope(); /* put arg declarations in new scope */ 
first=arg = NULL; 

for (token = lex(&val); (int) token != ')'; token 
{ 

if (token != SYMBOL) 
{ 

lex (&val) ) 

err("Syntax error in arg list. Wanted a symbol, not a %s\n", 
token name(token»; 

break; -
I 
if (first arg == NULL) 

first a~g = val.value.sym; 
set sym-type(val.value.sym, TINT); 
token =-lex(&val); -
if «int) token != ',') 

break; 

if «int) token != 'I') 
err ("Bad argument syntax\n"); 

token = lex(&val); 

/* Note acceptable use of goto to exit this block */ 
if «int) token == ';') 

got a exit_declare; 

if (scope level() > 1) 
{ -

err("Can't have nested functions\n"); 

/* parse all parameter declarations. */ 
while (declare (token, &val» 

token = lex(&val); 

if « int) current token () ! = '{') 
err("Expected '('\n"); 

/* Parse function body */ 
statement(' {', &val); 
sym_declaring(TRUE); 
set sym frame offset(sym, get frame size(»; 
lea-;:;-e_scope ();-

else if «int) token != ';') 
err(UMissing , it in declaration\n"); 



www.manaraa.com

532 

exit declare: 
syID_declaring(FALSE) ; 
return TRUE; 

) 

/*================================================================ 
* expr.c 
* Author P. Darnell 
* 9/86: Initial coding 
* 11/86: Added pointer and array reference 
* Purpose: 

Appendix F 

* To parse and compute values for C expressions. User functions and 
* C runtime calls are handled here as well as the usual unary 
* and binary operators 
* Algorithm: 

Uses recursive descent to parse expressions. 
* Assignments and calls are not done unless state.executing is true. 
* Bugs: Missing struct reference, 7:, and cast operators. 
*================================================================*/ 

#include <stdio.h> 
#include "lex.h" 
#include "token_st.h" 
#include "sym.h" 
#include "cint.h" 

/* Note internal function allusions */ 
#if STDC 
static MEMORY *primary(LEX TOKEN *, VALUE *, TYPE_DESC **); 
static MEMORY *unary_expression(LEX_TOKEN *, VALUE *, TYPE_DESC **); 
static MEMORY *post_op(LEX_TOKEN *, VALUE *, MEMORY *, TYPE DESC **); 
#else 
static MEMORY *primary(); 
static MEMORY *unary_expression(); 
static MEMORY *post_op(); 
#endif 

#define ARG MAX 32 
static int arg stack[ARG MAX]; 
static int arg=stack-pointer; 

/*================================================================ 
* Function: arg_list 
* Purpose: Gather an arg list for a call to an external, compiled function. 
* Algorithm: 

Create an array of argument expressions until a closing ')' is seen. 
Array of argument expressions until a closing ')' is seen. 
Array is filled in lexical order, and EXTERNAL ARG MAX elements will 
be passed to the called function. - -

*================================================================*/ 
static void arg_list() 
{ 

VALUE arg; 
int *ap = arg_stack; 
LEX_TOKEN token; 

token = lex(&arg); 
if «int)token == ') ') 

return; 

while «int) current_token() != ')') 
{ 

expression (token, &arg, 0); 



www.manaraa.com

C Interpreter Listing 

token = LEX NULL; 
if (arg.type == T DOUBLE) 
{ -

*(double *) &arg_stack[arg_stack-pointer) = arg.value.flt; 
arg_stack-pointer += sizeof(double) / sizeof(int); 

else 
arg_stack[arg_stack-pointer++) 

if « int) current token () ! = ',') 
break; -

arg.value.fix; 

if «int) current token () != ')') 
err("Missing ')' in function call"); 

/*================================================================ 
* Function: push args 
* Purpose: push-argument expressions for an internal call. 
* Algorithm: Keep pushing until a closing ')' is seen. 
* Calls itself recursively to push args in opposite order from 
* their lexical appearance. This way, after all pushes are done, 
* the first arg is closest to the stack pointer, 
* second arg is second closest, etc. 
*================================================================*/ 

static void push_args(formal-param, check_args) 
SYM *formal-param; 
int check_args; 

VALUE arg; 
LEX_TOKEN token; 

token = lex(&arg); 
if «int) token == ')') 

return; 

expression (token, &arg, 0); 
if (!state.executing && check_args) 
{ 

if (!formal-param) 
warn("Too many args for call\n"); 

else if (get_sym_type(formal-param) != arg.type) 
warn("Arg type mismatch\n"); 

533 

/* Recursive call to push arg here causes args to be pushed in reverse order. 
* This puts first arg at--l off the frame poiner, 2nd arg at -2, etc. 
*/ 
if «int)current token() == , ,') 
push_args(next~aram(), check_args); 

/* copy actual arg to stack */ 
if (state.executing) 

push_value(&arg); 



www.manaraa.com

534 Appendix F 

/*================================================================ 
* Function: user arg list(fn) 
* Purpose: Process arg list to internal function call. 
* ================================================================*/ 

static void user_arg_list(fn) 
SYM *fn; 

VALUE arg; 

push_args(first-param(fn), fn != NULL); 
if «int)current token() != ')') 

err("Missing 'T' in function call"); 

#define I MEAN DEC 1 
#define POST_INC_DEC 2 

/*================================================================ 
* Function: inc value( v, m, td, flags) 
* Purpose: Handle pre/post auto inc/dec (++.--) operations. 
* Args: pointer to VALUE struct with contents of memory location to be inc'ed 
* pointer to memory location to inc 
* pointer to type descriptor of memory location to inc 
* flags word: I MEAN DEC = decrement, POST INC DEC = postfix ++/--
* Result: inc'ed memo~y and inc'ed value struct (if not post inc/dec) 
*================================================================*/ 

static void inc value(v, m, td, flags) 
VALUE *v; -
MEMORY *m; 
TYPE DESC *td; 
int flags; 

int inc; 
VALUE_TYPE type; 

if (exp debug) 
{ -

printf("inc value: m=%x, .. , m)i 
print type(NuLL, td); 
print-value (v) ; 

if (!state.executing) 
{ 

if (!td) 
err("Bad operand to '%s'\n", flags & I_MEAN_DEC ? 

return; 
) 

"--" n++")i 

type = get type desc type(td); 
inc = (type == T_PTR) ? type_desc_size(get_type_desc_next(td)) 1; 

if (flags & I_MEAN_DEC) 
inc = -inc; 

if (type == T DOUBLE) 
v->value.flt += inc; 

else 
v->value.fix += inc; 



www.manaraa.com

C Interpreter Listing 

if (flags & POST INC DEC) 
{ - -

if (type == T DOUBLE) 
v->value.flt inc; 

else 
v->value.fix inc; 

/*================================================================ 
* Function: precedence( token) 
* Purpose: return precedence of an operator. 
*================================================================*/ 

static int precedence(token) 
LEX_TOKEN token; 

switch (token) 
{ 

case' [': 
case' {': 

return 15; 
case'!' : 
case''''' : 

return 14; 
case '*': 
case ' If : 
case '%': 

return 13; 
case '+': 
case '_': 

return 12; 
case RSHIFT: 
case LSHIFT: 

return 11; 
case GEQ: 
case LEQ: 
case '>': 
case '<': 

return 10; 
case EQ: 
case NEQ: 

return 9; 
case ' &' : 

return B; 
case' "": 

return 7 ; 
case r I': 

return 6; 
case '=': 

return 7; 

return 0; 

535 



www.manaraa.com

536 Appendix F 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

* Function: unary expression( ptoken, result, pp type desc) 
* Purpose: Parse any legal unary expression - -
* Inputs: token - currently unparsed token, Null if none. 

result - pointer to value of expression result. 
* ptoken - pointer to current token. 
* pp type desc - pointer to pointer to the type descriptor of the 
* - variable specified by the lhs expression. 
* Returns: 
* a pointer to the address of the unary expression. 
* ptoken - points to first token AFTER unary expression. 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

static MEMORY *unary expression(ptoken, result, pp type desc) 
LEX TOKEN *ptoken;- - -
VALUE *result; 
TYPE_DESC **pp_type_desc; 

MEMORY *lhs; 
VALUE v; 
LEX_TOKEN token; 

if (exp debug) 
printf(nln unary_expression: 1st token 

switch (*ptoken) 
( 

case SYMBOL: 

'%s' \n", token_name (*ptoken» ; 

return primary(ptoken, result, pp_type_desc); 

case CONSTANT: 
return primary(ptoken, result, pp_type_desc); 
break; 

case BUILTIN_FUNCTION: 
return primary(ptoken, result, pp_type_desc); 

case '*': 
*ptoken ~ lex (result) ; 
lhs ~ unary expression(ptoken, result, pp type desc); 
*pp type desc ~ get type desc next (*pp type desc); 
if (exp debug) - - - --

printf ("pointer ref (%x) \n", lhs, result->value. fix) ; 
lhs ~ result->value.mptr; 
assign memory to value(result, lhs, get_type_desc_type(*pp_type_desc»; 
return-lhsi - -

case '&': 
*ptoken ~ lex (result) ; 
lhs ~ unary_expression(ptoken, result, pp_type_desc); 
result->value.mptr ~ lhs; 
result->type T_PTR; 
return NULL; 

case SIZEOF: 
*ptoken ~ lex (result) ; 
unary_expression (ptoken, result, pp_type_desc); 
result->type ~ TINT; 
result->value.fi~ ~ type_desc_size(*pp_type_desc); 
return NULL; 



www.manaraa.com

C Interpreter Listing 

case '+': 
*ptoken = lex(result); 
return unary_expression(ptoken, result, pp_type_desc); 

case'!' : 
*ptoken = lex(result); 
unary expression(ptoken, result, pp type desc); 
if (result->type == TINT) --

result->value.fix =-!result->value.fixi 
else 

err ("Non integral operand to '!' \n II) ; 

return NULL; 

case ' -' : 
*ptoken = lex(result); 
unary expression(ptoken, result, pp type desc); 
if (result->type == TINT) --

result->value.fix =--result->value.fix; 
else 

err("Non integer operand to '-'\n"); 
return NULL; 

case ' -' : 
*ptoken = lex(result); 
unary expression(ptoken, result, pp type desc); 
if (result->type == TINT) --

result->value.fix --result->value.fixi 
else 

result->value.flt 
return NULL: 

case INCREMENT: 
*ptoken = lex(result); 

-result->value.flt; 

/* prefix ++ */ 

lhs = primary(ptoken, result, pp type desc); 
inc value(result, lhs, *pp type desc,-O); 
return Ihsi - -

case DECREMENT: /* prefix -- */ 
*ptoken = lex (result) ; 
lhs = primary(ptoken, result, pp type desc); 
inc value(result, lhs, *pp type desc,-I MEAN DEC); 
ret'Urn Ihsi - - --

case')' : 
return Ihsi 

case f (': 

expression(O, result, 0); 
if ((int)current token() != ')') 

err ("Unmatched-paren's\nn) ; 
break; 

default: 
return NULL; 

*ptoken = lex(&v); 
return Ihsi 

537 



www.manaraa.com

538 Appendix F 

/*================================================================ 
* Function:post op( ptoken, value, address, ptype) 
* Purpose: Handle post fix operators like "[]", "()II, n++", "--" 
* Args: ptoken - pointer to current token, 
* value - pointer to result value 
* address - pointer to user memory 
* ptype - pointer to type pointer 
* Result: memory address of expression result 
*================================================================*/ 

static MEMORY *post op(ptoken, value, address, ptype) 
LEX TOKEN *ptoken; 
VALUE *value; 
MEMORY *address; 
TYPE_DESC **ptype; 

int old_arg_stack-pointer; 
SYM *psym; 
VALUE v; 
VALUE_TYPE type; 

if (exp debug) 
printf(Uln post op: "); 

for (;; *ptoken =-lex(&v» 
{ 

if (exp debug) 
printf(lIpost op looks at: '%s'\n", token_name(*ptoken»: 

switch (*ptoken) 
{ 

case INCREMENT: /* post-fix ++ */ 
inc value(value, address, *ptype, POST_INC_DEC); 
continue: 

case DECREMENT: /* post-fix -- */ 
inc_value(value, address, *ptype, POST_INC_DEC 
continue: 

case' (': /* function call */ 
old_arg_stack-pointer = get_stack-pointer(); 
if (value->type != T FUNC && value->type != T_FUNC PTR) 

{ err(nIllegal function call\nn); 
return; 

psym = value->value.sym: 
user arg list (psym) ; 
value->type = get sym type(psym); 
if (state. executing) -

user call(psym, value); 
if (exp_debug) 
{ 

printf(nfn return val is:"); 
print_value (value) ; 

set_stack-pointer(old_arg_stack-pointer) ; 
continue; 

case' [' : j* array reference */ 
type = get type desc type (*ptype) ; 
/* Need extra memory-dereference for subscripted pointers */ 
if (type == T_PTR) 
{ 



www.manaraa.com

C Interpreter Listing 

I 

assign memory to value(value, address, T_PTR); 
address = value->value.mptr; 

else if (type !- T ARRAY) 
err("Need pointe; or array base for subscript expression.\n"); 

expression(O, value, 0); 
if (value->type != TINT) 

err("Non-integral subscript expression\n"); 
if «int) current token () != ']') 

err("Missing'I'"); 
*ptype = get type desc next(*ptype); 
type = get type desc type(*ptype); 
if (exp debug) - -

printf("array ref (%x) [%d]\n", address, value->value.fix); 
address +- value->value.fix * type_desc_size(*ptype); 
assign memory to value(value, address, type); 
continue; --

default: 
if (exp debug) 

printf("leaving post_op\n"); 
return address; 

/*====--=========================================================== 

539 

* Function: primary( ptoken, result, pp type desc) 
* Purpose: Parse primary syntactic tokens, sYmbolS and constants for now. 
* Inputs: 
* result - pointer to value of expression result. 
* ptoken - pointer to first token AFTER primary expression. 
* pp type desc - pointer to the data type descriptor of the 
* - va;iable specified by the lhs expression. 
* Returns: a pointer to the memory location represented by the 
* expression. 
*======================================-=========================*/ 

static MEMORY *primary(ptoken, result, pp_type_desc) 
LEX TOKEN *ptoken; 
VALUE *result; 
TYPE_DESC **pp_type_desc; 

MEMORY *address; 
VALUE TYPE type; 
int old_arg_stack-pointer; 
int *ap; 
BUILTIN PTR pbuiltin; 
FUNC_PTR pfunc; 

if (exp debug) 
printf("In primary: 1st token = '%s'\n", token_name(*ptoken»; 

switch (*ptoken) 
{ 
case BUILTIN FUNCTION: 

pbuiltin --result->value.builtin-ptr; 
if «int) lex (result) != , (') 

break; 
/* Allow for nested calls by using current stack base */ 
ap = &arg_stack[arg_stack-pointer]; 
old_arg_stack-pointer = arg_stack-pointer; 



www.manaraa.com

540 

arg list(); 
if (exp_debUg) 
{ 

int ai 

printf("Calling %s(", 
get builtin func name(pbuiltin»; 

for (a = a~g_stack~ointer - old_arg_stack~ointer; a; a--) 
printf("%x,", ap[a]); 

printf(")\n"); 

arg_stack~ointer = old_arg_stack~ointer; 
if (!state.executing) 

break; 
pfunc = get_builtin_func~tr(pbuiltin); 
if (result->type == T DOUBLE) 

result->value.flt =-(*(double (*) (» pfunc) ( 

Appendix F 

ap[O], ap[l], ap[2], ap[3], ap[4], ap[5], ap[6], ap[7], 
ap[8], ap[9], ap[lO], ap[ll], ap[12]); 

else 
result->value.fix = (*(int (*) 0) pfunc) ( 

break; 

case SYMBOL: 

ap[O], ap[l], ap[2], ap[3], ap[4], ap[5], ap[6], ap[7], 
ap[8], ap[9], ap[lO], ap[ll], ap[12]); 

*pp type desc = get sym type desc(result->value.sym); 
type = get type dese type (*pp type desc); 
if (type =:;;; T_FUNC) - --

result->type T_FUNC; 
else 

{ 
address = memory(result->value.sym); 
assign_memory_to_value(result, address, type); 

break; 

case CONSTANT: 
break; 

default: 
return NULL; 

*ptoken = lex (result) ; 
address = post op(ptoken, result, address, pp_type_desc); 
if (exp debug)-

printf("leaving primary\n "); 
return address; 

/*================================================================ 
* Function: expression (token, result, last~recedence) 
* Purpose: Parse legal C expressions. 
* Algorithm: 
* If precedence of current operator is greater or equal to 
* last-precedence parse current operation and return. 
* Otherwise recursively call expression to look for more operations 
* at this precedence. 
* Inputs: 
* token - current token value (nil means get a new token) 



www.manaraa.com

C Interpreter Listing 

* result - pointer to value struct of expression result 
* last-precedence - value of precedence of last operator seen 
* Result: TRUE if legal expression, FALSE if not 
*=-========================--=-=====-======-=-=-==--=-* / 

int expression(token, result, last-precedence) 
LEX TOKEN token; 
VALUE *result; 

VALUE rvalue; 
MEMORY *address = NULL; 
TYPE DESC *p type desc - NULL; 
int old_arg_stack~ointer; 
int a; 
int this-precedence; 

if (token -= LEX NULL) 
token lex(result); 

address = unary expression(&token, result, &p_type_desc); 
if (exp debug) -

printf(nIn expression (prec %d): n, last-precedence); 

for (;; token = current token(» 
{ -
if (exp debug) 

printf (" exp looks at %s \n n, token name (token) ) ; 
this-precedence - precedence(token); -
switch (token) 
{ 

case '+': 
case '-': 
case '*': 
case'I': 
case '&': 
case' I': 
case ''''': 
case '>': 
case '<': 
case RSHIFT: 
case LSHIFT: 
case EQ: 
case LEQ: 
case GEQ: 
case NEQ: 

if (last-precedence >= this-precedence) 
return; 

else 
expression (0, &rvalue, this-precedence); 

*if DEBUG 

#endif 

if (exp debug) 
{ -

} 

printf(n operator is %s: n, token_name(token»; 
printf(naddress = n); 
print value(result); 
printf (n rhs = n); 
print value(&rvalue); 
printf (n\n"); 

1* If types don't agree, we must convert int side to double *1 
if (rvalue.type != result->type) 
{ 

541 



www.manaraa.com

542 

if (result->type != T_DOUBLE) 
{ 

result->value.flt = result->value.fix; 
result->type T_DOUBLE; 

else 
{ 

rvalue.value.flt = rvalue.value.fix; 

if (result->type 
switch (token) 
{ 

case '+': 
result->value.flt += rvalue.value.flt; 
continue; 

case I_I: 

result->value.flt -= rvalue.value.flt; 
continue; 

case '*': 
result->value.flt *= rvalue.value.flt; 
continue; 

case '1': 
result->value.flt 1= rvalue.value.flt; 
continue; 

case EQ: 
result->value.fix 
continue; 

result->value.flt 

Appendix F 

rvalue.value.flt; 

case NEQ: 
result->value.fix result->value.flt != rvalue.value.flt; 
continue; 

case GEQ: 
result->value.fix = result->value.flt >= rvalue.value.flt; 
continue; 

case LEQ: 
result->value.fix 
continue; 

case '>': 
result->value.fix 
continue; 

case '<': 
result->value.fix 
continue; 

else if (result->type 
switch (token) 
{ 
case '+': 

result->value.flt <= rvalue.value.flt; 

result->value.flt > rvalue.value.flt; 

result->value.flt < rvalue.value.flt; 

result->value.fix += rvalue.value.fix; 
continue; 

case ,_': 
result->value.fix -= rvalue.value.fix; 
continue; 

case '*': 
result->value.fix *= rvalue.value.fix; 
continue; 

case' I' : 
result->value.fix 1= rvalue.value.fix; 
continue; 

case' I': 
result->value.fix 1= rvalue.value.fix; 



www.manaraa.com

C Interpreter Ustlng 543 

continue; 
case '&': 

result->Value.fix &- rvalue.value.fix; 
continue; 

case 'A': 
result->Value.fix A_ 'rvalue.value.fix; 
continue; 

case LSHIFT: 
result->Value.fix «- rvalue.value.fix; 
continue; 

case RSHIFT: 
result->value.fix >>- rvalue.value.fix; 
continue; 

case EO: 
result->value.fix = result->value.fix -- rvalue.value.fix; 
continue; 

case NEO: 
result->value.fix result->value.fix!= rvalue.value.fix; 
continue; 

case GEO: 
result->value.fix = result->value.fix >- rvalue.value.fix; 
continue; 

case LEO: 
result->value.fix - result->value.fix <- rvalue.value.fix; 
continue; 

case '>': 
result->value.fix result->value.fix > rvalue.value.fix; 
continue; 

case '<': 
result->value.fix = result->value.fix < rvalue.value.fix; 
continue; 

return; 

case '-': 
expression (0, result, this-precedence); /* Parse RHS */ 
if (!p type desc) 

err("Illegal Left Hand Side to assign op\n"); 
else if (state. executing) 

assign value to memory (result, address, 
- - - get_type_desc_type (p_type_desc) ); 

return; 

case 'I': 
case ' (' : 
case ']': 
case ',': 
case '\r': 
case 'I': 
case '\n': 

return; 

default: 
err("Unexpected token in expression: '%s'\n", token_name(token»; 
return; 

return; 



www.manaraa.com

544 

/*============================================================ 
* lex.c 
* Author: P. Darnell 
* Initial coding: 10/86 
* Purpose: 
* This module reads the input stream and identifies tokens. 
* Contiguous digits are recognized as numbers and contiguous 
* letters are recognized as symbols. 

Appendix F 

* The token code is returned as an int, and related data, if any, is stored 
* into the VALUE structure pointed at by the pvalue parameter to lex. 
* If EOF is detected and the input stream is not stdin, it is set to stdin. 
* if EOF is detected and the input stream is already stdin, 
* the program exits. 

/*============================================================ 

*include <math.h> 
*include <ctype.h> 
*include <stdio.h> 
*include "token st.h" 
*include "lex.h" 
*include "sym.h" 
*include "cint.h" 

*define MAX SYM 128 
*define MAX=STR 256 

extern FILE * input_st ream; 

static char str_buf[MAX_STR]; 

typedef struct 
{ 

char *key name; 
LEX_TOKEN-key_value; 
KEY_TABLE; 

static KEY TABLE key table[] 
{"break"; BREAK}, -
{flchar", CHAR}, 
{"continue", CONTINUE}, 
{"double", DOUBLE}, 
{flint", INT}, 
{"else", ELSE}, 
{"extern lt , EXTERN}, 
{"float", FLOAT}, 
{"for", FOR}, 
{"if", IF}, 
{"list", LIST}, 
{"return", RETURN}, 
("run", RUN}, 
{"short", SHORT}, 
{"signed", SIGNED}, 
{"sizeof", SIZEOF}, 
{"static", STATIC}, 
{"switch", SWITCH}, 
{"unsigned", UNSIGNED}, 
{ltvoid", VOID}, 
{"while", WHILE}, 
{"LEX_NULL", LEX_NULL}, 
{"»", RSHIFT}, 
{"«", LSHIFT}, 



www.manaraa.com

C Interpreter Listing 

) ; 

{"==U, 
{"!=", 
{">=", 
{"<=", 
{"++", 
{" __ ", 

EQ) , 
NEQ), 
GEQ), 
LEQ), 
INCREMENT) , 
DECREMENT) , 

("Symbol", SYMBOL), 
("Constant", CONSTANT), 
("Builtin function", BUILTIN FUNCTION), 
(NULL, (LEX_TOKEN) OJ, -

/*================================================================ 
* Function: token name(token) 
* Purpose: return-pointer to string corresponding to token. 
* Algorithm: Look up token in keyword spelling table. If not found, 
* assume that token is single letter and make into string by putting 
* char in buffer and following with a null. 

545 

* Note subsequent calls to this routine overwrite the single letter buffer. 
* Inputs: token to convert to string 
* Result: pointer to char 
*================================================================*/ 

char *token name(token) 
LEX_TOKEN-token; 

KEY TABLE *pkeytab; 
static char token_buf[2]; 

for (pkeytab = key_table; pkeytab->key_name; pkeytab++) 
if (pkeytab->key value == token) 

return pkeytab~>key_name; 

token buf[O] = (char) token; 
token=buf[l] = 0; 
return token_buf; 

/*================================================================ 
* Function: keyword() 
* Purpose: return LEX enum of keyword or LEX NULL if not keyword. 
* Algorithm: simple linear search of keyword-list. 
* Inputs: name - spelling of candidate keyword 
* Result: 
*================================================================*/ 

static LEX_TOKEN keyword (name) 
char *name; 

KEY TABLE *pkeytab; 
for-(pkeytab = key table; pkeytab->key value; pkeytab++) 

if (!strcmp(name~ pkeytab->key name» 
return pkeytab->key_value; -

return LEX_NULL; 



www.manaraa.com

546 Appendix F 

typedef struct 
{ 

VALUE_TYPE type; 
char *func name; 
FUNC_PTR f;nc-ptr; 
FUNC_TABLE; 

extern printf(), rand(), exit(), strcpy(), strcmp(), strcat(); 
extern double log (), 10glO (), cos (), sin (), tan (), sqrt (), pow (), exp () ; 
extern int user_malloc(), user_free(), scanf(), timet), ctime(); 

/* Table of external function names from C library. 
* These could be external user routines as well 
*/ 

static FUNC TABLE func table[] = { 

}; 

{T DOUBLE, "cos", (FUNC PTR) cos}, 
{T-INT, "ctime" , (FUNC PTR) ctime}, 
{T-INT, "exit", (FUNC_PTR) exit}, 
{T-DOUBLE, "exp" , (FUNC PTR) exp}, 
{T-INT, "free", (FUNC PTR) user free}, 
{T-DOUBLE, "log", (FuNC PTR) log}, 
{T-DOUBLE, "loglO", (FUNC PTR) 10glO}, 
{T-INT, "malloc", (FUNC_PTR) user_malloc}, 
{T=DOUBLE, "pow", (FUNC PTR) pow}, 
{T INT, "printf", (FUNC-PTR) printf}, 
{T-INT, "rand", (FUNC PTR) rand}, 
{T-INT, "scanf", (FUNC PTR) scanf}, 
{T - INT, "strcat", (FUNC PTR) strcat}, 
{T-INT, "strcmp", (FUNC=PTR) strcmp}, 
{T-INT, "strcpy", (FUNC PTR) strcpy}, 
{T-DOUBLE, "sin", (FUNC=PTR) sin}, 
{T=DOUBLE, "sqrt", (FUNC PTR) sqrt}, 
{T DOUBLE, "tan", (FUNC PTR) tan}, 
{T-INT, "time", (FUNC_PTR) time}, 
{T=UNKNOWN, O} 

/*================================================================ 
* Function: builtin function(name, pvalue) 
* Purpose: see if name is a builtin function 
* Algorithm: simple linear search of function table 

Put the array index of the matched function into the value node. 
* Inputs: 
* name - spelling of candidate builtin function 

pvalue - pointer to VALUE struct that gets assigned if builtin is found 
* Result: TRUE if name is builtin, FALSE if not. 
*================================================================*/ 

static BUILTIN_PTR builtin_function (name, pvalue) 
char *namei 
VALUE *pvalue; 

int a = 0; 

FUNC_TABLE *pfunctab; 
for (pfunctab = func_table; pfunctab->func-ptr; pfunctab++, a++) 

if (!strcmp(name, pfunctab->func_name» 
{ 

pvalue->type = pfunctab->type; 
pvalue->value.builtin_ptr = a; 
return TRUE; 



www.manaraa.com

C Interpreter Listing 

return FALSE; 

/* Return spelling of builtin name given index into function table */ 
char *get builtin func name(bp) 

BUILTIN=PTR bp;- -

return func_table[bp] .func_name; 

/* 

547 

* Return function pointer of builtin given index into function table */ 
*/ 

FUNC_PTR get_builtin_func-ptr(bp) 
BUILTIN_PTR bPi 

return func_table[bp] .func-ptr; 

/* 
* local wrappers to getc/ungetc 
*/ 

static char lex_get() 
{ 

return getc(input_stream); 

static void lex_unget(c) 
int Ci 

ungetc(c, input_stream); 

/*~~~~~~~~~~~=======~~~=~==~~=====~====~~========~==~==~==~~~==~~~ 

* Function: string char(c) 
* Purpose: return ;alue of single quoted char constant 
* Algorithm: check for backslash and return proper 
* Inputs: first character of char constant 
* Result: int value of char constant 
* Bug: Doesn't handle backs lashed octal constants 
*===~=~~==~~==~====~~==~=~=~=~~~=~========~=~~~==~=~==~==~~~=~==~*/ 

static int string_char (c) 

if (c == '\\') 
switch (lex_get(» 

case 'n' : return '\n'; 
case't': 

return' \t' ; 
case 'r': 

return ' \r' ; 
case 'b ' : 

return f \b ' ; 
case If': 

return '\ff; 
case 'v': 

return' \v' ; 
case 'a': 

return '\a'; 



www.manaraa.com

548 Appendix F 

return Ci 

/*================================================================ 
* Function: lexO{) 
* Purpose: Read input stream, and break into tokens of the C lexicon. 
* Algorithm: 
* Ignore extra whitespace. 
* Detect numeric constants, string constants, keywords, builtin functions 
* and symbols. Store the associated value or pointer in ~he VALUE struct 
* pointed at by pvalue. 
* The lex main entry is found in the module token st.e, it is there because 
* lexO is called only on the initial parse. When executing, lex takes its 
* tokens from a linked list of tokens that lex stored away 
* on the initial parse. 
* Inputs: 
* pvalue - pointer to VALUE struct to be initialized with 
* relevant token data 
* Result: Enurn of lex'ed token. 
*================================================================*/ 

LEX_TOKEN lexO{pvalue) 
VALUE *pvaluei 

VALUE *sym_value; 
char *Pi 
double value, scale; 
LEX_TOKEN kw; 
char c, C2i 

next char: 
c ;;; lex_get () ; 

if (c == '.') 
goto leading_dot; 

/* lex a numeric constant 
*/ 
if (isdigit (c» 
{ 

int radix = 10; 

1* We assume here that digits 0-9 are in consecutive ascending order. 
* (like ASCII or EBCDIC) 
*/ 

value = c - '0'; 
if (value == 0) /* Hex or Octal */ 
{ 
if «c = lex_get (» 
{ 

'x, II c == 'X') /* Ox prefix means hex */ 

for (c = lex_get(); isxdigit(c); c = lex_get(» 
{ 

value *= 16; 
if (isdigit (c) ) 

c -= '0'; 
else 
{ 

c = toupper (c) ; 
c = 10 + (c - 'A'); 



www.manaraa.com

C Interpreter Listing 

else 
( 

value += c; 

radix = 8; 
lex_unget(c); 

for (c = lex_get(); isdigit(c); c 
{ 

value *= radix; 
value += c - '0'; 

if (0 != '.' && c != 'e' && c != 'E') 
( 

return int constant: 
pvalue~>value.fix = value; 
pvalue->type = TINT; 
lex unget(c); -
return CONSTANT; 

if (0 == '.') 
{ 

leading dot: 
scale = 1; 
for (c = lex get(); isdigit(c); c = lex_get(» 
{ -

double fract_digit; 

scale *=.1; 
fract digit = c - '0'; 
fract-digit *= scale; 
value-+= fract_digit; 

/* Deal with exponent: e/E[+/-l<digit>* */ 
if (c == 'e' II c == 'E') 
{ 

int neg_exp = FALSE; 

c = lex get () ; 
switch (c) 
{ 
case I_I: 

neg exp = TRUE; 
case '+': 

c = lex get () ; 
case' 0' :-
case ' l' : 
case '2' : 
case '3' : 
case ' 4' : 
case '5' : 
case ' 6' : 
case ' 7' : 
case ' 8' : 

549 



www.manaraa.com

550 

case '9': 
for (scale = 0; isdigit(c); c 
{ 

scale *= 10; 
scale += c - '0'; 

value *= pow(10.0, neg_exp ? -scale 
break; 

default: 
err("Badly formed float constant\n"); 

pva1ue->value.flt = value; 
pvalue->type = T_DOUBLE; 
lex_unget(c) ; 

return CONSTANT; 

else if (isalpha (c) I I c 
{ 

p = sym buf; 

, -') 

scale); 

while (Isalpha(c) I I c 
{ 

I I isdigit (c) ) 

*p++ = Ci 
C = lex_get () ; 

lex unget(c); 
*p ;; 0; 
if (kw = keyword(sym_buf» 

return kw; 
if (builtin_function (sym_buf, pva1ue» 

return BUILTIN_FUNCTION; 

pvalue->type = T PTR; 
if (!sym_find(sym_buf, &pvalue->value.sym» 
{ 

pvalue->value.sym 

return SYMBOL; 

switch (c) 

case'I': 
c2 = lex get(); 
if (c2 =;; '*') 
{ 

/* process a comment */ 

while «c2 
{ 

lex_get(» != EOF) 

if (c == '*' && c2 
gato next char; 

c = c2; -
if (c2 == '\n') 

bump_1ine_count(); 

, /') 
/* end of comment */ 

err (UEnd of file before end of comment.n); 

else 
lex_unget(c2) ; 

break; 

case '\n': 

Appendix F 



www.manaraa.com

C Interpreter Listing 

case '\r': 
bump line count(); 
if (state~calc mode) 

break; -
case' \t' : 
case r ,. 

gato next_chari 

case' \' '! 

/* Process a char constant */ 
pvalue->value.fix = string char(lex get(»; 
if (lex get() != "") - -

printf(UMissing trailing' in string constant\n"); 
pvalue->type = T_INT; 
return CONSTANT; 

case' III: 
/* Process a quoted string */ 
c = lex_get () ; 
for (p = str buf; c 1- .... && C != EOF; c lex_get (» 

*p++ = string char(c); 
*p = 0; -
pvalue->value.fix = user malloc(strlen(str buf) + 1); 
strcpy(pvalue->value.fix~ str_buf); 
pvalue->type = T_PTR; 
return CONSTANT; 

case '=': 
c2 = lex get () ; 
if (c2 =-;;;; '=') 

return EQ; 
else 

lex unget(c2); 
break; 

case'!' : 
c2 = lex_get () ; 
if (c2 == '=') 

return NEQi 
else 

lex unget(c2); 
break; 

case '>': 
c2 = lex get () ; 
if (c2 =-;;;; '=') 

return GEQi 
else if (c2 == '>') 

return RSHIFT; 
else 

lex unget(c2); 
break; 

case '<': 
c2 = lex_get () ; 
if (c2 == '=') 

return LEQ; 
else if (c2 == '<') 

return LSHIFT; 
else 

lex_unget(c2) ; 
break; 

551 



www.manaraa.com

552 

case '+': 
c2 = lex get () ; 
if (c2 =;; '+') 

return INCREMENT; 
else 

lex unget(c2); 
break; 

case ,_': 
c2 = lex get () ; 
if (c2 =;; '-') 

return DECREMENT; 
else 

lex unget(c2); 
break; 

case , , , . 
case ';' : 
case ' [': 
case 'l' : 
case ' I': 
case '}': 
case ' (': 
case ' ) , : 
case ' *, : 
case ' I': 
case ' &' : 
case ,,,, : 

break; 

case EOE': 
/* exits if user types EOE' */ 
if (input stream stdin)" 

exit (0); 
input stream = next file(); 
goto next char; -
break; -

default: 
printf(" Unknown character %d\n", c); 
break; 

return (LEX_TOKEN) c; 

Appendix F 



www.manaraa.com

C Interpreter Listing 

#include <stdio.h> 
#include "lex.h" 
#include "token st.h" 
#include "sym.h" 
#include "cint.h" 

FILE *input_stream = stdin; 

/* Stashs away a file name for later retrieval by * next_file() 
*/ 

#define MAX USER FILES 20 
static char-*user file[MAX USER FILES]; 
static int file_count = 0;-

static void stash_file(f) 
char *f; 

if (file count > MAX USER FILES) 
( -

err("Too many files, sorry.\n"); 
exit(l); 

f; 

static int auto_startup; /* True if we should start at main 
* automatically */ 

/*================================================================ 
* Function: call main() 
* Purpose: call user's main routine 
* Algorithm: 
* Set global state, and call routine called "main" 
*================================================================*/ 

void call main() 
{ -

SYM *sym; 
VALUE value; 

if (!sym find ("main" , &sym» 
( -

err("No main function\n"); 
return; 

state. saving token stream = FALSE; 
state.executing = TRUE; 
user call(sym, &value); 
state. saving token stream TRUE; 
state.executing = FALSE; 

553 



www.manaraa.com

554 

static void put-prompt() 
{ 

printf("Cint> H); 

C Interpreter Listing 

/*================================================================ 
* Function: next file() 
* Purpose: Return the file pointer to thelnext input file. 
* Algorithm: 
* Return the file pointer to the next file stashed away by stash_file() 
* If no files are left, use stdin, and turn on prompts. 
*================================================================*/ 

FILE *next file() 
{ -

FILE *fp; 

if (file count == 0) 
if (auto startup) 
{ -

call main () ; 
exitIO); 

else 
{ 

state.prompting 
put-prompt(); 
return stdin; 

TRUE; 

fp fopen(user file[--file count], Hr"); 
if (!fp) - -
{ 

printf(HCan't open %s\nH, user_file[file_count]); 
exit(l); 

return fPi 

/*================================================================ 
* Function: main (argc, argv) 
* Purpose: first routine to be called. 
* Algorithm: 
* Parse command line for files and options. 
* Then go into loop reading input from files (if any), then stdin. 
* Look for LIST, and RUN commands, if neither, look for declaration. 
* If not that either, assume that use is typeing in expression to 
* be evaluated, parse it and print result. 
* Inputs: 
* argc - count of command line args 
* argv - pointer to list of null terminated strings representing 
* command line args. 
*================================================================*/ 

main (argc, argv) 
int argc; 
char **argv; 



www.manaraa.com

Appendix F 

VALUE value; 
LEX TOKEN token; 
int-expression(); 

for (argv++; argc-- > 1; argv++) 
if (**argv == '-') 
{ 

if (!strcmp(*argv, "-d1ex"» 
lex debug = TRUE; 

else If (!strcmp (*argv, "-dexp"» 
exp debug = TRUE; 

else If (!strcmp(*argv, "-dstmt"» 
{ 

stmt debug = TRUE; 
state.prompting = TRUE; 

else if (!strcmp(*argv, "-run"» 
auto startup = TRUE; 

else -
printf("Unknown option %s\n", *argv); 

else 
stash_fi1e(*argv); 

input stream = next fi1e(); 
state~saving_token_stream TRUE; 

for (;;) /* loop until user types exit() or EOF 
* character */ 

if (state.prompting) 
put""prompt () ; 

token = lex(&value); 
switch (token) 
{ 

case RUN: 
printf("Ca1ling main ... \n"); 
call main(); 
continue; 

case LIST: 
sym_list () ; 
continue; 

if (!declare(token, &value» 
{ 

state.calc mode = TRUE; 
state.executing = TRUE; 
state. saving token stream = FALSE; 
expression(token, &value, 0); 
state.executing = FALSE; 
state.saving token stream TRUE; 
state.calc mode = FALSE; 
if (value.type == T DOUBLE) 

printf("%g\n", value.va1ue.f1t); 
else if (value. type != T VOID) 

printf("%d\n", value.value.fix); 

555 



www.manaraa.com

556 C Interpreter Listing 

/*============================================================ 
* stmt.c 
* Author: P. Darnell 
* 10/86 Created 
* Purpose: Parse and execute C statements. 
*============================================================*/ 

Jlinclude "token_st.h" 
Jlinclude "sym.h" 
Jlinclude "cint.h" 
iinclude "lex.h" 

/* Check for semicolon, report error if missing */ 
static void check_semicolon() 
{ 

VALUE val; 

if «int) current_token 0 !=';') 
{ 

err("Missing semicolon\nn); 
lex(&val); 

static int statement level; 
static char break_seen; 

/*================================================================ 
* Function: statement(token, pvalue) 
* Purpose: parse and execute C statements 
* Algorithm: Uses recursive descent 
* When in execution mode, little syntax checking is performed, and pointers 
* to things like statement top and end of if tokens are assumed to have been 
* successfully handled in the parse phase~ 
* Inputs: 
* token - enum of last lex'ed token 
* pvalue - pointer value of last lex'ed token 
*================================================================*/ 

void statement(token, pvalue) 
LEX_TOKEN token; 
VALUE *pvalue; 

TOKEN *statement top; 
TOKEN *loop_exit; 

statement level++; 
if (!state.executing && state.prompting) 

printf("slvl %d> ", statement level); 
if (token == LEX NULL) -

token = lex(pvalue); 
if (stmt debug) 

printfC"First token in stmt lvl %d: %s\n", 
statement level, token_name(token»; 

switch (token) -
{ 

case 'I': /* Compound statement */ 
enter scope 0 ; 
while-(declare(lex(pvalue), pvalue»; 
while «int) current_tokenO != 'I') 
{ 

statement«int) current_token(), pvalue); 



www.manaraa.com

Appendix F 

if (state.returning I I break_seen) 
break; 

if (stmt debug) 
printf("tokens after stmt in block: %s,", 

token name (current token(»); 
token = lex(pvalue); -
if (stmt debug) 

printf("%s\n", token_name(token»; 

leave scope 0 ; 
break; 

case IF: /* If statement */ 
statement_top = get_token-pc(); 

if (!state.executing) 
{ 

/* initial parse */ 

set if else(statement top, NULL); 
if «int) lex(pvalue)-!= , (') 

err("Missing , (' after if\n"); 
expression (0, pvalue, 0); 
if «int) current tokenO != 'I') 

err ("Missing')" after if\n"); 
statement(O, pvalue); 
if (lex (pvalue) == ELSE) 
{ 

token = lex(pvalue); 
set if else(statement top, get_token-pc(»; 
statement (token, pvalue); 

else 
( 

set if else(statement top, NULL); 
unlex(); -

else 
{ 

/* Running */ 

skip token 0; /* , (' */ 
expression (0, pvalue, 0); 
if (pvalue->value.fix != 0) 

statement (0, pvalue); 
else if (get if else(statement top» 
( - - -

set_token-pc(get_if_else(statement_top»; 
statement(O, pvalue); 

break; 

case WHILE: /* While statement */ 
statement_top = get_token-pc(); 
if (!state.executing) /* initial parse */ 
{ 

loop exit = NULL; 
if «int) lex (pvalue) != , (') 

err("Missing , (' after while\n"); 
expression (0, pvalue, 0); 

557 



www.manaraa.com

558 

if «int) current token() != ')') 
err ("Missing ,),. after while \n U ) ; 

statement (0, pvalue); 

Appendix F 

/* Lex to next token to get token after WHILE stmt */ 
lex (pvalue) ; 
set loop exit (statement top, get_token-pc(»; 
unlex();- -

else 
{ 

/* Running */ 

loop exit 
while (1) 
{ 

get loop_exit(statement_top); 

skip token () ; / * '(' * / 
expression (0, pvalue, O)i 
if (pvalue->value.fix == 0) 

break; 
statement(O, pvalue); 
if (break_seen) 

break; 
set_token-pc(statement_top) ; 
skip_token(); /* 'while' */ 

break seen = FALSE; 
set_token-pc(loop_exit); 

break; 

case FOR: /* For statement */ 
statement_top = get_token-pc(); 
if (!state.executing) /* initial parse */ 
{ 

loop exit = NULL; 
if «"int) lex (pvalue) != '(') 

err("Missing I (' after for\nn); 
expression (0, pvalue, 0); 1* in it expression */ 
check semicolon(); 
set loop test (statement top, get_token-pc(»; 
expression (0, pvalue, 0); /* boolean expression */ 
check semicolon(); 
set_Ioop_increment(statement_top, get_token-pc(»; 
expression(O, pvalue, 0); /* increment expression */ 
if «int) current token () != ')') 

err (nMissing ')'- after for\n1l); 
set_Ioop_body(statement_top, get_token-pc(»; 
statement(O, pvalue); 
/* Lex to next token to get token after FOR stmt */ 
lex (pvalue) ; 
set loop exit (statement top, get_token-pc(»; 
unlex();- -

else 
{ 

/* Running */ 

loop exit = get loop exit(statement top); 
skip-token(); - - /* '(' */­
expression (0, pvalue, 0); /* init */ 
while (1) 
{ 

set_token-pc(get_loop_test(statement_top» ; 
skip token(); /* ,., */ 
expression (0, pvalue, 0); /* boolean test */ 



www.manaraa.com

C Interpreter Listing 

if (pvalue->value.fix == 0) 
break; 

set_token-pc(get_loop_body(statement_top» ; 
skip_token(); /* ')' */ 
statement(O, pvalue); 
if (break_seen) 

break; 
set_token-pc(get_loop_increment(statement_top»; 
skip token (); /* ';' */ 
expression (0, pvalue, 0); /* increment */ 

break seen = FALSE; 
set_t;ken-pc(loop_exit); 

break; 
case RETURN: 

expression(O, pvalue, 0); 
check semicolon(); 
if (state.executing) 

state. returning = TRUE; 
break; 

case BREAK: 
lex (pvalue) ; 
check semicolon(); 
if (state.executing) 

break_seen = TRUE; 
break; 

/* Return statement */ 

/* Break statement */ 

case LEX_NULL: /* Error in token list */ 
err( f1 Internal error in Cint, premature token list end"); 

case ';': 
break; 

/* Null statement */ 

default: /* Expression */ 
expression«int) current_token(), pvalue, 0); 
check semicolon(); 
break; 

if (stmt debug) 
printf("Leaving stmt level %d\n", statement_level); 

statement_level--; 

559 



www.manaraa.com

560 Appendix F 

/*============================================================ 
* sym.c 
* Author: P. Darnell 
* Initial coding: 8/86 
* Purpose: Handle symbol creation and access. 
*===------=-=================================================*/ 

Idefine SYM OWNER 
linclude "token st.h" 
linclude "sym.h" 
linclude "cint.h" 

/* maximum scope nesting depth */ 
Idefine MAX_SCOPE_LEVEL 32 

static SYM *sym head; 
static SYM **local_scope_table; 

static int Scope level; 
static int frame=offset; 

int scope level() 
{ -

return Scope_level; 

/* Flag to tell sym enter() if we are in a declaration section. */ 
static char Sym_declaring; 

/*================================================================ 
* Set declaration state. 
*================================================================*/ 

void sym declaring(x) 
int x;-

Sym_declaring x; 

/*================================================================ 
* Function: enter scope() 
* Purpose: Increment Scope level to reflect entered scope. 
* Scope level 1 is for arguments, scope level 2 and on are function 
* local symbols. 
* Result: Scope level incremented, and frame offset zeroed for 
* entry to arg-scope or function scope. -
*================================================================*/ 

void enter scope() 
{ -

Scope level++; 
if (Scope level == 1 I I Scope_level 2) 

frame_offset = 0; 



www.manaraa.com

C Interpreter listing 

typedef struct list 
{ 

struct list *1 next; 
SYM *l_object;­
LIST_ELEMENT; 

LIST_ELEMENT *make_list(s) 
SYM *s; 

LIST ELEMENT *p = (LIST_ELEMENT *) malloc(sizeof(LIST_ELEMENT»; 
p->l-next = NULL; 
p->l=object = s; 
return Pi 

static SYM *func sym; 
void set func sym(sym) 

SYM *sYm; -

/* 

561 

* Note that we are leaving a scope level. If we have returned to scope level 
* 0, that means that we just finished a function declaration. Store the 
* symbol table as a linked list off the function sym node. 
*/ 

void leave scope() 
{ -

int ai 

SYM *p; 
LIST_ELEMENT *plist; 

if (stmt debug) 
print£"("Leaving scope level %d\n", Scope_level); 

Scope_level--; 

/* 
* End of function declaration. Remember symbols scoped to this function. 
*/ 

if (Sym declaring && Scope level == 0) 
{- -

func sym->func descriptor.func sym list 
local_scope_table = NULL; --

int get frame size() 
{ 

return frame_offset; 



www.manaraa.com

562 Appendix F 

int type desc size(td) 
TYPE_DESC *td; 

if (td->type == T ARRAY) 
return td->size-* type desc size(td->next); 

return type_size (td->type) ; 

/*================================================================ 
* Function: sym table (scope level) 
* Purpose: * Return a pointer to the first symbol at scope level. 
* Algorithm: -
* If there is no local symbol table for the current function, make one. 
* Inputs: scope level - current scope level 
* Result: pointer to sym table for current scope level. 
*================================================================*/ 

static SYM **sym table (scope level) 
int scope_level; -

if (local scope table == NULL) 
( --

local scope table = (SYM **) calloc(sizeof(SYM), MAX_SCOPE_LEVEL); 
if (local_scope_table == NULL) 
{ 

err ( .. Symbol table overf low\n") ; 
exit(l); 

if (scope level> 0) 
return &lOcal_scope_table[scope_1evel - 1]; 

return &sym_headi 

/*================================================================ 
* Function: sym allocate(sym) 
* Purpose: Allocate storage in memory for a symbol. 
* Algorithm: 

Keep a running count of the next available memory location in 
* the static var "frame offset II for args and frame locals. Call 
* static alloc to assigo memory to globals and statics. 

Note that args are positive offsets from the frame pointer, 
locals are negative. (We grow the stack downward in memory) 

* Inputs: sym - pointer to symbol to allocate 
* Result: 
*================================================================*/ 

void sym_allocate(sym) 
SYM *SYffi; 

if (exp debug) 
print=sym(sym, 0); 

/* Actually alloc the space */ 
switch (Scope_level) 
( 

case 0: 
sym->sym storage = GLOBAL; 

/* Global sym */ 

sym->sym offset = static alloc(type desc size (&sym->sym type»; 
break; - - - - -



www.manaraa.com

C Interpreter Listing 

case 1: /* Args */ 
sym->sym storage = STACK; 
sym->sym=offset = frame_offset; 

/* Array arguments are treated as pointers */ 
if (sym->sym_type.type == T_ARRAY) 

sym->sym_type.type = T_PTR; 

frame offset += type_desc_size(&sym->sym_type); 
break; 

default: /* Locals */ 
sym->sym storage = STACK; 
frame offset -= type desc size (&sym->sym type); 
sym->sym offset frame offset; -
break; - -

tdefine FIRST_ARG_OFFSET 0 

/* 
* Allocate storage offsets for argument list, given the first arg in the 
* list. 
*/ 

void sym arg a11ocate(first arg) 
SYM *fIrst=arg; -

SYM *p; 

frame offset = FIRST ARG OFFSET; 
for (p = first arg; p; p-= p->sym_next) 

sym_allocate(p); 

/*=====-========================================================== 
* Function: sym enter(name) 
* Purpose: Enter a symbol in the symbol table. 
* Algorithm: 
* If we are sym declaring, enter at 
* current scope; if not declaring, assume we have a reference to an 

563 

* undeclared function that needs to be as scope level O. If we ever support 
* goto label, the label needs to be at scope level 1. 
* Inputs: name - pointer to null terminated string of symbol name. 
* Result: pointer to symbol entry. 
*================================================================*/ 

SYM *sym enter(name) 
char *namei 

SYM *p, *q; 
SYM **ptable; 
int enter_level; 

if (stmt debug) 
printf("sym entering %s at scope level %d\n", name, Scope_level); 

p = (SYM *) malloc(sizeof(SYM»; -

p->sym_type.type = T_UNKNOWN; 
p->sym type.next = NULL; 
enter_level = Sym_declaring ? Scope_level 0; 



www.manaraa.com

564 

ptable = sym_table(enter_level); 

if (*ptable) 
{ 

q = *ptable; 
while (q->sym_next) 

q = q->sym_next; 
q->sym_next = p; 

else 
*ptable p; 

p->syrn name = (char *) malloc(strlen(name) + 1); 
if (p->syrn name == NULL) 
{ -

err ("Symbol table overflow\n"); 
exit(1); 

strcpy(p->sym_name, name); 
p->syrn next = NULL; 
p->func_descriptor.func_sym_list 
return Pi 

NULL; 

/*================================================================ 

Appendix F 

* Function: sym find(name, psym) 
* Purpose: Try-to find a symbol called "name" in the symbol table. 
* Algorithm: 
* Use a an array of linked list. One linked list per scope. This coule 
* Be sped up by using a hash table for a symbol table, at least for the 
* file level scoping, but this is an exercise left for the student. 
* If we are declaring symbols, only look for the name in the current scope. 
* Inputs: name - pointer to null terminated string of symbol name. 
* psym - pointer to sym pointer to be filled in if name is found. 
* Result: TRUE if name is found, FALSE if it isn't. 
*================================================================*/ 

int sym_find(name, psym) 
char *namei 
SYM **psym; 

SYM *p; 
int slvl; 

for (slvl = Scope_level; slvl >= 0; slvl--) 
{ 

for (p = *sym table(slvl); p; p = p->sym_next) 
if (!strcmp(p->sym name, name» 
{ -

*psym = p; 
return TRUE; 

} 

if (Sym declaring) 
break; 

} 

*psym = (SYM *) NULL; 
return FALSE; 



www.manaraa.com

C Interpreter Listing 

/* Return C spelling of a type */ 
static char * type_name(type) 

VALUE_TYPE type; 

switch (type) 
( 
case T_ARRAY: 

return n[],,; 
case T_PTR: 

return "*"; 
case T_CHAR: 

return "charll; 
case T_SHORT: 

return "short"; 
case TINT: 

retu~n "int"i 
case T_VOID: 

return "void"; 
case T_FLOAT: 

return "float"; 
case T DOUBLE: 

retu];n IIdouble"j 

return "??11; 

/*================================================================ 
Sym printing support routines. 

*================================================================*/ 
static void print-pointer_type(td) 

TYPE_DESC *td; 

if (td->next) 
print-pointer_type(td->next) ; 

if (td->type != T ARRAY) 
printf("%s", type_name(td->type»; 

static void print_array_type(td) 
TYFE_DESC *td; 

if (td->type == T ARRAY) 
printf("[%d]", td->size); 

if (td->next) 
print_array_type(td->next); 

void print_type (sym, td) 
SYM *sym; 
TYPE_DESC *td; 

print-pointer_type(td) ; 
if (sym) 

printf ("\t%s", sym->sym name); 
print_array_type(td); -

565 



www.manaraa.com

566 Appendix F 

/*================================================================ 
* Function: print sym(p, indent level) 
* Purpose: print out information about a symbol. 
* Algorithm: 
* Inputs: p - pointer to symbol entry 
* indent level - amount of indenting to print before symbol. 
*===============~================================================*/ 

void print sym(p, indent level) 
SYM *p; - -
int indent_level; 

LIST ELEMENT *plist; 
int a; 
SYM *param; 
VALUE TYPE t, t2; 
TOKEN-*func_body; 

if (p == NULL) 
return; 

for (a = 0; a < indent_level; a++) 
printf(" "); 

t = p->sym_type.type; 

if (t == T FUNC) 
{ -

printf("%s %s( ", 
type name(p->func descriptor.func type), p->sym_name); 

for (param ~ first-Faram(p); param;) -
{ 

} 

printf("%s", param->sym name) i 
param = next-Faram(); -
if (param != NULL) 

printf(", "); 

printf(" )\n"); 
for (param = first-Faram(p); param; param next-Faram(» 

print sym(param, indent level + 1); 
if (exp -debug) -

printf(" body %x, frame size %d\nn 
,p->func descriptor.func start, p->sym offset); 

func body = p->func descriptor.func start; -
if (func_body != NULL) -
{ 

if (!state.executing) 
print_token_list(func_body); 

else 
printf("i\n"); 

else 
{ 

print type(p, &p->sym type); 
if (exp debug) -

printf("<%d+%d>", p->sym_storage, p->sym_offset); 
printf{";\n"); 



www.manaraa.com

C Interpreter Listing 567 

/*================================================================ 
* Function: add sym type (sym, type, size) 
* Purpose: --
* Add a type modifier (like pointer or array) to a symbol with an existing 
* base type. 
* Inputs: sym - pointer to sym entry to add type information to. 
* type - type to be added 
* size - size of array dimension if type is array 
*================================================================*/ 

void add sym type (sym, type, size) 
SYM *sYm; -
VALUE TYPE type; 
int sIze; 

p = (TYPE-PESC *) malloc(sizeof(TYPE_DESC»; 
q = &sym->sym type; 
*p = *q; -
q->next = p; 
q->type = type; 
if (type == T ARRAY) 
( -
if (size <= 0) 
( 

err("Bad size to array declaration."); 
return; 

q->size = size: 

/*================================================================ 
* Function: sym list() 
* Purpose: List-all symbols in table 
*================================================================*/ 

void sym list () 
( -

/* 

SYM *p; 
int Si 

for (s = MAX SCOPE LEVEL - 1; s >= 0; s--) 
for (p = *sym table(s); p; p = p->sym_next) 
print_sym(p~ s); 

* Define accessor functions for SYM fields. 
*/ 

char *get sym name(p) 
SYM *p;- -

return p->sym_name; 



www.manaraa.com

568 

static SYM *param-ptr; 

SYM *first-param(fn) 
SYM *fn; 

SYM **pt; 
pt = fn->func descriptor.func sym list; 
if (pt != NULL) - -

param-ptr = *pt; 
return pararn-ptri 

SYM *next-param() 
{ 

if (para~tr == NULL) 
return NULL; 

return param-ptr = param-ptr->sym_next; 

TYPE_DESC *get_sym_type_desc(p) 
SYM *p; 

return &p->sym_type; 

TYPE DESC *get type desc next(p) 
TYPE_DESC *p; - -

return p->nexti 

VALUE TYPE get type dese type(p) 
TYPE_DESC *p; - -

return p->type; 

VALUE_TYPE get_sym_type(p) 
SYM *p; 

return p->sym_type.type; 

void set_sym_type(p, t) 
SYM *p; 
VALUE_TYPE t; 

p->sym_type.type t; 

Appendix F 



www.manaraa.com

C Interpreter Listing 

void set sym frame offset (sym, frame_offset) 
SYM *sYm.; - -
int frame_offset; 

sym->sym_offset = frame_offset; 

int get sym frame offset(sym) 
SYM *sym;- -

return sym->sym_offset; 

void set sym storage (sym, storage) 
SYM *sYm.; -
STORAGE storage; 

sym->sym_storage storage; 

STORAGE get sym storage (sym) 
SYM *sym;- -

return sym->sym_storage; 

void set func start(sym, pc) 
SYM *sYm.; 
TOKEN *pc; 

sym->func_descriptor.func_start pc; 

TOKEN *get func start (sym) 
SYM *sym; -

return sym->func_descriptor.func_starti 

void set func type(sym, type) 
SYM *sYm.; -
VALUE_TYPE type; 

sym->func_descriptor.func_type 

VALUE_TYPE get_func_type(sym) 
SYM *sym; 

type; 

return sym->func_descriptor.func_type; 

569 



www.manaraa.com

570 Appendix F 

/* 
* token st.c 
* Author: P. Darnell 
* Purpose: Manage the token stream. The token stream is a linked list of 
* tokens with lex'ed values. 
* 
*/ 

#define TOKEN OWNER 
#include "lex~h" 
#include "sym.h" 
#include "cint.h" 
#include "token st.h" 
#include <stdi~h> 

char *token_name(); 

static TOKEN *token head; 
static TOKEN *token-PC; 
static TOKEN *next token PC; 
static TOKEN *last-token-PC; 
static TOKEN *pushed_token_PC; 

static LEX_TOKEN token; 

static int line count; 
void bump line count() 
{ --

line_count++; 

/*================================================================ 
* Function: err(str, ~rgl, arg2, arg3, arg4) 
* Purpose: print out error message 
* Inputs: str - printf format string 
* argl .. 4 - 4 args to be printed by str control 
*================================================================*/ 

void err(str, argl, arg2, arg3, arg4) 
char *str; 
int argl, arg2, arg3, arg4; 

printf("Error at line %d: ", line count); 
printf(str, argl, arg2, arg3, arg4); 

/*============-=================================================== 
* Function: warn(str, argl, arg2, arg3, arg4) 
* Purpose: print out warning message 
* Inputs: str - printf format string 
* argl .. 4 - 4 args to be printed by str control 
*================================================================*/ 

void warn(str, argl, arg2, arg3, arg4) 
char *stri 
int argl, arg2, arg3, arg4; 

printf("Warning at line %d: ", line count); 
printf(str, argl, arg2, arg3, arg4); 



www.manaraa.com

C Interpreter Listing 

/*================================================================ 
* Push current token back into lex stream, so next call to 
* lex will return it. 
*================================================================*/ 

void unlex () 
{ 

pushed token PC = token PC; 
token_PC last_token_PC; 

/*================================================================ 
* Function: add to token stream(token, pvalue) 
* Purpose: add a lexical-token to the token stream. 
* Algorithm: 

571 

* Token stream is a linked list of C tokens. Each function has a pointer 
* to a token stream that represents the function body. It is this stream 
* that gets interpreted at execution time. 
* Inputs: token - the lexical token 
* pvalue- pointer to the value node associated with the token. 
*================================================================*/ 

void add to token stream(token, pvalue) 
LEX_TOKEN-token; 
VALUE *pvalue; 

TOKEN *p; 

last token PC = token PC; 
if (token ;;= RUN I I token == LIST) 

return; 
p = (TOKEN *) malloc(sizeof(TOKEN»; 
p->tk line = line count; 
p->tk-token = token; 
p->tk-value = *pvalue; 
p->tk-next = NULL; 
if (token PC) 
{ -

token PC->tk next = p; 
tOken=PC = p; 

p; 

/*================================================================ 
* Function: skip token() 
* Purpose: Skip Over the current token. Used for execution mode to skip 
* over uninteresting tokens. 
*================================================================*/ 

void skip token() 
{ -

token PC = next token PC; 
token ;; token PC=>tk token; 
next token PC-= token PC->tk next; 
if (lex debug) - -

printf("Skipping token %s\n", token_name(token»; 



www.manaraa.com

572 Appendix F 

/*================================================================ 
* Function: next token(pvalue) 
* Purpose: return the next token in the token stream. 
* Algorithm: next token PC holds the current pointer in the 
* token list. The enumeration value of the token is always returned, 
* and the VALUE struct is assigned to pvalue if necessary. 
* Inputs: pvalue - pointer to VALUE struct to receive value part of token. 
* Result: the next token in the stream, LEX NULL if none. 
*==========================================~=====================*/ 

LEX TOKEN next token(pvalue) 
VALUE *pvalue; 

LEX TOKEN token; 
if (next token PC == NULL) 
{ --

err("Missing , }'\nfl)i 
state. executing = FALSE; 
return LEX_NULL; 

token PC = next token PC; 
token-= token PC->tk token; 
line count = token PC->tk line; 

/* see-if we need to-copy value part of token */ 
switch (token) 
{ 

case CONSTANT: 
case SYMBOL: 
case IF: 
case WHILE: 
case FOR: 
case BUILTIN FUNCTION: 

*pvalue = token_PC->tk_value; 

next token PC 
return token; 

/*================================================================ 
* Return current token value 
*================================================================*/ 

LEX TOKEN current token() 
{ - -

return token; 

/*================================================================ 
* Print a string the way it was typed in. 
*================================================================*/ 

static void print_string(s) 
char *5; 

char Ci 

putchar('''')i 
while (c = *s) 

switch (*s++) 
{ 
case' \f' : 



www.manaraa.com

C Interpreter Listing 

putchar('\\'); 
putchar('f') ; 
break; 

case '\n': 
putchar('\\'); 
putchar (' n') ; 
break; 

case '\t': 
put char (' \ \' ) ; 
putchar (' t') ; 
break; 

case I \b' : 
putchar (' \ \' ) ; 
putchar('b') ; 
break; 

default: 
put char (c) ; 

putchar (' ", ) ; 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

* Print the value of a VALUE struct. 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void print_value(p) 
VALUE *p; 

if (p->type ~~ TINT) 
printf (n%d If, p->value. fix) ; 

else if (p->type ~~ T PTR) 
print string(p->val;e.ptr); 

else if-(p->type ~~ T DOUBLE) 
printf("%#g n, p->value.flt); 

else if (p->type ~~ T FUNC) 
printf("func"); -

else 
printf{"??"); 

static void print_newline (indent_level) 
{ 

int a; 
printf ("\n") ; 
for (a ~ 0; a < indent_level; a++) 

printf (" "); 

573 



www.manaraa.com

574 Appendix F 

/*======================--============--========================== 
* Function: print token list(p) 
* Purpose: print token list for LIST command. 
* Algorithm: Follow links in token list, printing each token 
* in order. Try to be clever about when td print new lines and 
* how far to indent. This needs some more smarts, especially 
* for "for" loops. 
* Inputs: p - pointer to token list head. 
*================================================================*/ 

void print_token_list(p) 
TOKEN *p; 

int indent level = 0; 
int suppress_newline = 0; 

for (; p; p = p->tk next) 
switch (p->tk token) 
{ -
case SYMBOL: 

printf("%s ", get_sym_name(p->tk_value.value.sym)); 
break; 

case CONSTANT: 
print value(&p->tk value); 
break; -

case BUILTIN FUNCTION: 
printf("%s-", get builtin func name(p->tk value.value.sym)); 
break; - - - -

case FOR: 
suppress newline = 2; 

default: -
if «int) p->tk_token 'I') 
{ 

if (indent level> 0) 
print newline(indent level); 

indent_level++; -

printf("%s ", token name(p->tk token)); 
if «int) p->tk_token == ';') -
{ 

if (suppress newline) 
suppress newline--; 

else -
{ 

if «int) p->tk next->tk token 'j') 
indent level-~; -

print_newline(indent_level); 

else if (p->tk_token == (LEX_TOKEN) 'j') 
{ 

if (indent_level == 0) 
{ 

j 

printf("\n\n"); 
return; 

if (p->tk_next->tk_token (LEX_TOKEN) 'j') 



www.manaraa.com

C Interpreter Listing 

indent level--; 
print newline(indent level); - -

/*=-============--============================================= 
* Define accessor functions for token stream objects. 
*============================================================*/ 

void set_token-pc(new-pc) 
TOKEN *new -pc; 

next token PC = token_PC 
token = LEX_NULL; 

TOKEN *get_token-pc() 
{ 

return token_PC; 

TOKEN *get_next_token-pc() 
{ 

return next_token_PC; 

TOKEN *token_list_head() 
{ 

return token_head; 

new-pc ; 

/*===========-===-================================================ 
* Debug routine to print current token */ 
*-===============================================================*/ 

void ptoken () 
{ 

printf("current token is %s\n", token_name(token_PC->tk_token»; 

/*================================================================ 
* Function: lex (pvalue) 
* Purpose: return the next lexical token. 
* Algorithm: 
* If there is a pushed token, return it and reset pushed token PC. 
* If we are using the token stream, get the previously saved away token 
* otherwise call lexO to lexically analyse input files. 

575 

* If we are in saving token state, add the token to the saved token stream. 
* from the token stream. 
* Inputs: 
* pvalue - pointer to VALUE struct to be filled in by lex'ed item. 
* Result: 
*================================================================*/ 

LEX TOKEN lex(pvalue) 
VALUE *pvalue; 

if (pushed token PC) 
{ --

token_PC = pushed_token_PC; 



www.manaraa.com

576 

token = pushed token PC->tk token; 
pushed_token_PC = NULL; -

else if (state.using token stream) 
token = next_token(pvalue); 

else 
{ 

} 

token = lexO(pvalue); 
if (state.saving token stream) 

add_to_token_stream(token, pvalue); 

Hf DEBUG 
if (lex debug) 
{ -

printf("token %s ", token name(token»; 
if (token == SYMBOL && pvalue->value.sym) 

print sym(pvalue->value.sym, 0); 
else if-(token == CONSTANT) 

print value(pvalue); 
printf ("\n") ; 

!!endif 
return token; 

int frame-pointer 0; 

/*================================================================ 
* Function: user call(fn, return val) 
* Purpose: Call an internal inte~preted function. 
* Algorithm: 

Appendix F 

* Save the current frame pointer, set the frame pointer to top of stack, 
* allocate a new top of stack past local function variables. 
* Start execution of function by setting the token stream pointer 
* to the token stream stored away for this function. 
* Assume that all args have been pushed. 
* Inputs: 
* fn - pointer to symbol entry for the function. 
* return val - pointer to VALUE struct to receive function result 
*========~=======================================================*/ 

void user call(fn, return val) 
SYM *fn; -
VALUE *return_val; 

char save_return_statei 
TOKEN *save_token-pc; 
int old_frame-pointer; 

if (stmt debug) 
{ -

printf("calling %s\n", get_sym_name(fn»; 
print_sym(fn, 0); 

if (!fn I I (get sym type (fn) != T FUNC 
&& (state.executing IT get_sym_type(fn) != T_UNKNOWN») 

err("Bad function name '%s'\n", get_sym_name(fn»; 
return; 

if (!state.executing) 



www.manaraa.com

C Interpreter Listing 577 

return; 
if (state.using token stream == FALSE) 

save_token-pc-= NULL; 
else 

save_token-pc = next_token_PC; 
state.using token stream = TRUE; 
save return-state-= state.returning; 
old_frame-pointer = frame-pointer; 
frame-pointer = get_stack-pointer(); 
set_stack-pointer(frame-pointer + get_sym_frame_offset(fn»; 
set_token-pc(get_func_start(fn»; 
statement(O, return val); 
if (stmt debug) -

printf("returned from call \n") ; 
frame-pointer = old_frame-pointer; 
state.returning - save return state; 
if (save_token-pc == NULL) -

state. using token stream = FALSE; 
else --

set_token-pc(save_token-pc); 

/*================================================================ 
* Accessor functions for token stream related VALUE fields 
*================================================================*/ 

TOKEN *get_Ioop_exit(p) 
TOKEN *p; 

return p->tk_value.value.loop_descriptor.loop_exit; 

void set loop exit(p, q) 
TOKEN *p, *q; 

p->tk_value.value.loop_descriptor.loop_exit q; 

TOKEN *get if exit(p) 
TOKEN *p; -

return p->tk_value.value.if_descriptor.if_exit; 

void set_if_exit(p, q) 
TOKEN *p, *q; 

p->tk_value.value. if_descriptor. if_exit q; 

TOKEN *get if else(p) 
TOKEN *p; -

return p->tk_value.value.if_descriptor.if_else; 



www.manaraa.com

578 

void set if else(p, q) 
TOKEN *p,-*q; 

p->tk_value.value.if_descriptor.if_else = q; 

TOKEN *get loop test(p) 
TOKEN *p; -

return p->tk_value.value.loop_descriptor.loop_test; 

TOKEN *get loop body(p) 
TOKEN *p; -

return p->tk_value.value.loop_descriptor.loop_body; 

TOKEN *get loop increment(p) 
TOKEN *p; -

Appendix F 

return p->tk_value.value.loop_descriptor.loop_increment; 

void set_loop_body(p, q) 
TOKEN *p; 
TOKEN *q; 

p->tk_value.value.loop_descriptor.loop_body q; 

void set_loop_test(p, q) 
TOKEN *p; 
TOKEN *q; 

p->tk_value.value. loop_descriptor. loop_test q; 

void set loop increment(p, q) 
TOKEN *p; -
TOKEN *q; 

p->tk_value.value. loop_descriptor. loop_increment q; 



www.manaraa.com

C Interpreter Listing 

/* 
* memory.c 
* Author: P. Darnell 
* Purpose: Manage access to variable storage space 

* 
*/ 

finclude "1ex.h tl 

finclude "sym.h" 
finclude "cint.h" 
ilinclude "token st.h" 
finclude <stdio~h> 

/* define number of memory bytes for stack and global variables */ 
ildefine MAX_MEMORY_ADDRESS 16383 

static MEMORY Memory[MAX MEMORY ADDRESS); 
extern int frame-pointer; -/* defined in token_st.c */ 
/* Stack starts at high memory and works down */ 
static int stack-pointer = MAX_MEMORY_ADDRESS; 

/* Return a pointer to the memory location referenced by the symbol. 

579 

* If we are not executing, then stack variables do not refer to a meaningful 
* place. 
*/ 

MEMORY *memory(sym) 
SYM *sym; 

unsigned memory index; 
if (get sym storage(sym) == STACK) 

memory_index frame-pointer + get_sym_frame_offset(sym); 
else 

printf ("var at %x: If, memory_index); 
print_sym(sym, 0); 

if (memory_index > MAX_MEMORY_ADDRESS) 
{ 

if (state.executing) 
err ("Attempt to address past top of memory (Ox%X) \n", memory_index); 

memory_index = 0; 

return Memory + memory_index; 

void assign memory to value(v, m, type) 
VALUE *v;- --
MEMORY *m; 
VALUE_TYPE type; 

if «unsigned) (m - Memory) > MAX_MEMORY_ADDRESS && state.executing) 
( 

err("Memory address out of range (Ox%X) \n", m - Memory); 
return; 



www.manaraa.com

580 Appendix F 

/* m += (int) Memory; */ 
if (type != T_DOUBLE && type != T_FLOAT) 
{ 

switch (type) 
{ 

/* Array type means use address of array, not contents */ 
case T ARRAY: 

v->value.mptr = m; 
break; 

case T_FUNC: 
case T PTR: 

v->value.mptr *(MEMORY **) m; 
break; 

case T CHAR: 
v->value.fix *(char *) m; 
break; 

case T SHORT: 
v->value.fix *(short *) m; 
break; 

case T LONG: 
v->value.fix *(long *) m; 
break; 

case TINT: 
v->value.fix *(int *) m; 
break; 

case T FLOAT: 
v->value.fix *(float *) m; 
break; 

case T DOUBLE: 
v->value.fix *(double *) m; 
break; 

default: 
err("Unknown type in assign m to v(%d)\n", type); 

v->type 

else 
{ 

switch (type) 
( 
case T_CHAR: 

v->value.flt 
break; 

case T_SHORT: 
v->value.flt 
break; 

case T_LONG: 
v->value.flt 
break; 

case TINT: 
v->value.flt 
break; 

case TJLOAT: 
v->value.flt 
break; 

case T DOUBLE: 
v->value.flt 
break; 

default: 

*(char *) m; 

*(short *) m; 

*(long *) m; 

*(int *) m; 

*(float *) m; 

* (double *) m; 

err("Unknown type in assign m to v(%d)\n", type); 



www.manaraa.com

C Interpreter Listing 581 

v->type T_DOUBLE; 

if (exp_debug) 
{ 

printf ("asg mem (%x) type 
print_value(v); 

%d to value:", m - Memory, type); 

/* Assign a value to memory pointed to by m, of type type. */ 
void assign value to memory(v, m, type) 

VALUE *v;- --

{ 

MEMORY *m; 
VALUE_TYPE type; 

/* Following cast to unsigned causes negative values of (m-Memory) 
* to be > MAX MEMORY ADDRESS, thus capturing upper and lower bounds 
* check in one compare. 
*/ 
if «unsigned) (m - Memory) > MAX_MEMORY_ADDRESS && state.executing) 
{ 

err ("Memory address out of range (Ox%X) \n", m - Memory) ; 
return; 

/* m += (int) Memory; */ 
if (v->type != T DOUBLE) 

switch (type) -
{ 

case T_FUNC: 
case T PTR: 

* (MEMORY **) m 
break; 

case T_CHAR: 

v->value.mptr; 

*(char *) m v->value.fix; 
break; 

case T_SHORT: 
*(short *) m v->value.fix; 
break; 

case T LONG: 
*(long *) m v->value.fix; 
break; 

case TINT: 
* (int *) m v->value.fix; 
break; 

case T FLOAT: 
*(float *) m v->value.fix; 
break; 

case T DOUBLE: 
*(do~ble *) m v->value.fix; 
break; 

default: 
err("Unknown type in assign v to m(%d)\n", type); 

else 
switch (type) 
{ 
case T_CHAR: 

*(char *) m 
break; 

case T_SHORT: 

v->value.flt; 



www.manaraa.com

582 Appendix F 

*(short *) m v->value.flt; 
break; 

case T LONG: 
* (long *) m v->value.flt; 
break; 

case T_INT: 
*(int *) m v->value.flt; 
break; 

case T FLOAT: 
*(float *) m v->value.flt; 
break; 

case T_DOUBLE: 
* (double *) m 
break; 

default: 

v->value.flt; 

err (IlUnknown type in assign v to m(%d)\n U , type); 

if (exp_debug) 
{ 

printf ("asg value to mem (%x) type 
print_value (v); 

/* Return the size of a type */ 
int type_size(type) 

VALUE_TYPE type; 

switch (type) 
{ 
case T_FUNC: 
case T PTR: 

retu;n sizeof(char *); 
case T CHAR: 

retu;n sizeof(char); 
case T SHORT: 

retu~n sizeof(short); 
case T_LONG: 

return sizeof(long); 
case TINT: 

return sizeof(int); 
case T_FLOAT: 

return sizeof(float); 
case T DOUBLE: 

return sizeof(double); 
case T_VOID: 

return 0; 
default: 

%d:", m - Memory, type); 

err("Unknown type (%d) in type_size\n", type); 



www.manaraa.com

C Interpreter Listing 

push value(v) 
VALUE *v; 

stack-pointer -= type_size(v->type); 
if (exp debug) 
( -

printf("pushing arg at mem address %x: ", stack-pointer); 
print value (v) ; 

assign_value_to_memory(v, Memory + stack-pointer, v->type); 

int get_stack-pointer() 
( 

return stack-pointer; 

void set_stack-pointer(new_sp) 
int new_sp; 

stack-pointer = new_sp; 

static int global offset; 
int static alloc(size) 
( -

int 0; 
o = global offset; 
global_offset += size; 
return 0; 

/* Very simple memory free algorithm */ 
void user_free(m) 

MEMORY *m; 

/* Very simple memory allocate algorithm */ 
MEMORY *user malloc(size) 
( -

return Memory + static_alloc(size); 

583 



www.manaraa.com

Appendix G 

ASCII Codes 

oct dec hex char oct dec hex char 

0 0 0 NUL A@ 31 25 19 EM Ay 

1 1 1 SOH AA 32 26 lA SUB AZ 

2 2 2 STX AB 33 27 lB ESC A[ 

3 3 3 ETX AC 34 28 lC FS AI 
4 4 4 EQT AD 35 29 lD GS A] 
5 5 5 ENQ AF 36 30 lE RS 
6 6 6 ACK AF 37 31 IF US 
7 7 7 BEL AG 40 32 20 SPACE 
10 8 8 BS AH 41 33 21 I 
11 9 9 TAB AI 42 34 22 " 
12 10 A LF AJ 43 35 23 # 

13 11 B VT AK 44 36 24 $ 

14 12 C FF AL 45 37 25 % 
15 13 D VR AM 46 38 26 & 
16 14 E SO AN 47 39 27 
17 15 F SI AO 50 40 28 ( 
20 16 10 DLE Ap 51 41 29 ) 
21 17 11 DCl AQ 52 42 2A * 
22 18 12 DC2 AR 53 43 2B + 
23 19 13 DC3 AS 54 44 2C 
24 20 14 DC4 AT 55 45 2D 
25 21 15 NAK AU 56 46 2E 
26 22 16 SYN AV 57 47 2F / 
27 23 17 ETB AW 60 48 30 0 
30 24 18 CAN AX 61 49 31 1 



www.manaraa.com

ASCII Codes 585 

oct dec hex char oct dec hex char 

62 50 32 2 131 89 59 Y 
63 51 33 3 132 90 5A Z 
64 52 34 4 133 91 5B [ 
65 53 35 5 134 92 5C \ 
66 54 36 6 135 93 50 ] 
67 55 37 7 136 94 5E 
70 56 38 8 137 95 5F 
71 57 39 9 140 96 60 
72 58 3A 141 97 61 a 
73 59 3B 142 98 62 b 
74 60 3C < 143 99 63 c 
75 61 3D = 144 100 64 d 
76 62 3E > 145 101 65 e 
77 63 3F ? 146 102 66 f 
100 64 40 @ 147 103 67 g 
101 65 41 A 150 104 68 h 
102 66 42 B 151 105 69 
103 67 43 C 152 106 6A j 
104 68 44 0 153 107 6B k 
105 69 45 E 154 108 6C 
106 70 46 F 155 109 60 m 
107 71 47 G 156 110 6E n 
110 72 48 H 157 111 6F 0 

111 73 49 I 160 112 70 P 
112 74 4A J 161 113 71 q 
113 75 4B K 162 114 72 r 
114 76 4C L 163 115 73 s 
115 77 4D M 164 116 74 t 
116 78 4E N 165 117 75 u 
117 79 4F 0 166 118 76 v 
120 80 50 P 167 119 77 w 
121 81 51 Q 170 120 78 x 
122 82 52 R 171 121 79 Y 
123 83 53 S 172 122 7A z 
124 84 54 T 173 123 7B { 
125 85 55 U 174 124 7C I 
126 86 56 V 175 125 7D } 
127 87 57 W 176 126 7E 
130 88 58 X 177 127 7F del 



www.manaraa.com

586 

Symbols 

decimal point, 52 
structure member operator, 156, 247 

... , ellipsis, 295, 425 

.c filename extension, 12 

.h filename extension, 13, 335 

.0 filename extension, 12 

I, logical negation operator, 140 

1=, not equal to operator, 82, 138 

?:, conditional operator, 155-156 

.. comma operator, 137-138 

; semicolon, 20 
misplaced, 106 
mistakenly used to end macro 

definitions, 318 

:, bit fields, 256-259 
conditional expression operator, 

155-156 
statement label, 113 

", double quote, 31, 179, 328 
surrounding filenames, 335 

" single quote, 46 

() 
cast operator, 72, 152-153 
function call, 29, 290 
function calls, 19 
macro call, 319 
parenthesized expression, 122-123 

[], array subscript operator, 156 

{} 

& 

array initialization, 163 
function body, 20, 286 
initialization of arrays, 195 
initia~i;~tion of nested structures, 

initialization of structures, 247 
compound statement, 85-88 
missing braces, 87 

address of operator, 156, 297 
See also address-of operator 
illegal with bit fields, 256 
illegal with register variables, 230 
in scan/O calls, 283 

bitwise AND operator, 144, 147 

Index 

&&, logical AND operator, 140 

&=, bitwise AND assign operator, 152 

# 
preprocessor symbol, 34, 316 
stringizing operator, 328 

##, token pasting operator, 329 

% 
conversion symbol in print/O 

function, 31, 439 
remainder operator, 125, 126-135 

%If conversion character, example of 
80 ' 

%p print specifier. See print/O 
function 

%s format specifier, 184 

+ 
addition operator, 125 
unary plus operator, 124 

++, increment operator, 96, 133 
applied to pointers, 186, 188 
applied to subscripts, 188 
postfix, use of, 309 

subtraction operator, 125 
unary minus operator, 124 

--, decrement operator, 133 

->, structure member operator, 156, 
248, 270 

-D, macro defining option, 332 
... 

dereference operator, 156 
See also dereference operator 

multiplication operator, 20, 125 

"", end comment, 27 

'. division operator. 125 

, .... begin comment. 27 

A. bitwise exclusive OR operator. 144. 
148 

A=. bitwise exclusive OR assign 
operator. 152 

I. bitwise inclusive OR operator. 144. 
147 

II. logical OR operator. 140 

1=. bitwise inclusive OR assign 
operator. 152 

=. assignment operator. 20. 128 



www.manaraa.com

Index 

confused with equal to operator ==, 
83 

erroneous use in macro definitions, 
321 

==, equal to operator, 82, 138 
confused with assignment operator 

=, 83 

<, less than operator, 82, 138 

<=, less than or equal to operator, 82, 
138 

«, left shift operator, 144-146 

<<=, left shift assign operator, 152 

<>, #lnclude command, 34 

>, greater than operator, 82, 138 

>=, greater than or equal to operator, 
82, 138 

», right shift operator, 144-146 

»=, right shift assign operator, 152 

\ 
continuation character, 33, 187, 

317 
escape sequence character, 33 

\0, null character, 50, 179 

\8, alert, 50 

\b, backspace, 50 

\r, form feed, 50 

\n, newline, 30, 50 

\r, carriage return, 50 

\t, horizontal tab, 50, 107 

\ v, vertical tab, 50 

-, bitwise complement operator, 144, 
148 

_, underscore character, 23, 513 
macro names beginning with, 326 

_DATE_ macro, 327 

_FILE_ macro, 326, 410 

_LINE_ macro, 326, 337, 410 

_STDC_ macro, 327 

_TIME_ macro, 327 

jOFBF macro, 359, 452 

jOLBF macro, 359, 452 

jONBF macro, 359, 452 

A 
abort signals, 423 

abortO function, 460 

aborting a program, 115 

absO function, 129, 463 

587 

absolute value function, Jabs 0 , 419 

absolute values 
abs() function, 463 
Jabs() function, 419 
labsO function, 464 

abstract declarators, 482 

abstraction, 301 
data, 16, 387 
of programming problems, 382 

access modes, JopenO, 347 

acos() function, 417 

actual arguments, 19, 281, 282 

Ada programming language, 388 

addition operator +, 125 

additive operators, 125 

address of operator &, 56, 156, 297 
illegal with bit fields, 256 
illegal with register variables, 230 
in scanJO calls, 283 

addresses 
finding, 56 
mapping variables to fixed, 233 
of variables, 21 
passing as arguments, 283 
writing, 56 

aggregate types, 40 

Aho, Alfred 382 

alert, escape character sequence \8, 
50 

algorithms, 10 
choosing efficient, 384-388 
for encoding files, 167 
sorting, 176-179 

bubble sort, 176 

alignment 
natural, 255 
of structure members, 254-256 

allocation 
See also memory allocation 
of enum variables, 74 



www.manaraa.com

588 

of memory 
calloc() function, 459 
Jree() function, 459 
malloc() function, 460 
realloc() function, 460 

allusions, 226-242, 284, 288 
See also function allusions 
function, syntax of, 289 

alpha test, 400 

alphabetic characters, testing for, 412 

alphabets, for different languages, 413 

American National Standards 
Institute. See ANSI Standard 

American Standard Code for 
Information Interchange. See 
ASCII character set 

ampersand. See address-of operator 

analysis, of performance, 401 

AND operator 
bitwise &, 144, 147 
logical &&, 140-144 

ANSI features 
const storage-class modifier, 231 
flexible formatting of preprocessor 

lines, 317 
float and long double constants, 

54 
function prototypes, 292 
generic pointers, 240 
initialization of arrays, 165 
initializing unions, 275 
long double type, 53 
signed qualifier, 45 
string concatenation, 187 
string producer, 328 
struct and union name spaces, 253 
the #error directive, 337 
the #pragma directive, 338 
token pasting, 329 
trigraph sequences, 51 
unsigned constants, 49 
unsigned conversions, 68 
using a macro name in its own 

definition, 324 
volatile storage-class modifier, 233 

ANSI Standard, 6-7 
STDC macro, 327 

differenc-e5 from K&R standard, 
500-511 

goals of, 7 
syntax of, 478-494 

arc cosine, acos() function, 417 

arc sine, asin() function, 417 

Index 

arc tangent, atan() function, 417 

argc, argument to main (), 309 

argument expression lists, 486 

arguments, 19 
actual, 19, 281, 282 
command line, 309 
declaration of, 20, 285-288 

ANSI style, 286 
default type of, 286 
formal, 19, 281, 282 

assigning values to, 250 
implicit conversions of, 285, 291 
maximum number per function, 496 
multidimensional arrays, 199-201 
names of, 19 
pass by reference, 259, 281-282 
pass by value, 259, 281-283 
passing, 281-283 

arrays as, 174-176,285-286 
arrays vs. structures, 261 
by reference, 281-283 
by value, 281-283 
functions as, 285-286 
pointers to functions, 302 
structures, 259-261 
structures vs. arrays, 261 

passing arrays as, 174,285-286 
passing functions as, 285-286 
passing pointers as, 169-171 
passing structures as, 259-261 
pointer, 232 
scope of, 224 
to macros, 319 

binding of, 326 
no type checking for, 321-323 
side-effects in, 325 

variable number of, 295, 425-426 

argv, argument to main (), 309 

arithmetic functions, integer, 463 

arithmetic operators, binary, 125-128 

arithmetic types, 39 

array elements 
initial, 160 
referencing, 160-161 

array names 
interpretation of, 172 
naked, 173 

array subscript operator [], 156 

arrays, 159-214 



www.manaraa.com

Index 

and pointers, 172-173 
base address of, 173 
bounds-checking of, 17 5, 177 
declaring, 160-162 
definition of, 159 
finding number of elements in, 176 
finding the size of, 163, 175 
initial element of, 160 
initializing, 163-165 

memset() function, 466 
interpreted as pointers, 172 
maximum size of, 496 
memory allocation of, 162, 177 
multidimensional, 195-202 

example of, 201-202 
initializing, 197 -19 9 
passing as function arguments, 

199-201 
of arrays. See multidimensional 

arrays 
of chars. See strings 
of pointers, 202-206, 207 
of strings, 203 
of structures, 245, 248-251 
passing as function arguments, 

174-176, 285-286 
vs. passing structures, 261 

storage in memory, 162-163 
subscripting, 160-161 

ASCII character set, 45, 47, 101, 
167, 413 

ASCII codes, table of, 584 

asctimeO function, 474 

asin() function, 417 

assembler, 2 

assembly language, 2 

assert. h header file, 407, 410 

assert() function, 410-411 

assignment conversions, 63 

assignment operator =, 20, 128 
confused with equal to operator ==, 

83 
erroneous use in macro definitions, 

321 

assignment operators, 128-132, 489 
bitwise, 152 

assignment statements, 20, 25-26 

assignment suppression flag, in scanf() 
function, 449 

assignments 

589 

of strings, 181-183, 184 

associativity, of operators, 120-124 

asterisk, dereference operator. See 
dereference operator 

atan() function, 417 

atan2() function, 416 

atexit() function, 461 

atof() function, 310, 456 

atoi() function, 309, 456 

atol () function, 456 

a u to storage class specifier, 217, 
235-236 

automatic conversions. See implicit 
conversions 

automatic duration, 216 
and recursion, 307 
initialization of variables with, 

217-219 

automatic product builiding, 395-398 

B 
B programming language, 5 

backslash character \, 33 

backspace, escape character sequence 
\b, 50 

base address, of arrays, 173 

base type, of bit fields, 256 

batch programs, 377 

beta test, 400 

binary arithmetic operators, 125-128 

Binary Coded Decimal (BCD) format, 
280 

binary format, 342-343 

binary number, 1 

binary numbers, table of, 147 

binary operators, 64, 82, 488 

binary trees, storing symbol tables as, 
385 

binders. See linkers 

binding 
of macro arguments, 326 
of operators. See associativity 



www.manaraa.com

590 

bit, definition of, 1 

bit fields, 256-259 
base type of, 256 
memory allocation of, 256 
portability of, 258 
syntax for declaring, 256, 481 

bit manipulation operators, 144-152 

bitwise 
AND assign operator &=, 152 
assignment operators, 152 
exclusive OR assign operator, 152 
inclusive OR assign operator, 152 
logical operators, 146-158 

blank character. See space character 

block 110, 354-361 

block of statements. See compound 
statements 

block scope, 220-223 

blocks, 344 

body 
function, 18-20, 286 
macro, 317 

Boole, George, 82 

Boolean data types, 82 

boolean expressions. See comparison 
expressions 

bottlenecks, 401 

bounds checking of arrays, 175, 177 

braces. See compound statements 

break statement, 111-113 
used to exit a switch statement, 

91-94 

Brodie, James, 6 

Brooks, Fredrick P., 389 

Brooks' law, 390 

bsearch () function, 462-463 

bubble sort algorithm, 176, 300 

buffered 110, 340, 343-344 
block buffering, 344 
line buffering, 344 

buffers, 343 
flushing, 428 
keyboard, 97 
setting default parameters, set'IJbufO 

function, 451 

Index 

setting size of, setbuf() function, 
451 

bug, origin of term, 397 

bug alerts 
binding of macro arguments, 326 
comparing floating-point values, 

139 
confusing = with ==, 83 
confusing typedef with #define, 

62 
dual meanings of static, 225 
ending a macro definition with a 

semicolon, 318 
integer division and remainder, 129 
misplaced semicolons, 106 
missing braces, 87 
no nested comments, 28 
off-by-one errors, 104 
opening a file, 349 
passing structures vs. passing 

arrays, 261 
referencing elements in a 

multidimensional array, 199 
side effects, 136 
side effects in macro arguments, 

325 
side effects in relational expressions, 

142 
space between left parenthesis and 

macro name, 322 
the dangling else, 89 
using = to define a macro, 321 
walking of the end of an array, 177 

build files, 395 

built-in macros, 326-329 

byte, size of, 42 

c 
C programming language 

history of, 5-6 
nature of, 8 
standardization of. See ANSI 

Standard 
tenet of, 8 

C Reference Manual. See K&R 
standard 

C++ programming language, 231, 292 

calculator program, 110-111 

call by reference, 281-283 

call by value, 281-283 

calloc() function, 238, 459 



www.manaraa.com

Index 

calls, function. See function calls 

carriage return, escape character 
sequence \r, 50 

case keyword, 90 

case labels, 90 
maximum number of, 496 

case mapping functions, runtime 
library, 411 

case-sensitivity, 22 

cast expressions, 72, 487 
confusion with unions, 273 

cast operator 0, 152-153 

casts, 152-153 
integer to floating-point, 129 
of function return values, 291 
return value from malloc(), 240 
to pointer, 201 
to unsigned, 146 
to void, 291 

cc command, 12 

ceil() function, 419 

cfree() function, 459 

char type specifier, 46, 47 

CHAR_BIT macro, 497 

CHAR_MAX macro, 497 

character arrays. See strings 

character constants, 46, 183-184 
syntax of, 484 

character handling functions, runtime 
library, 411-412 

character set 
ASCII. See ASCII character set 
EBCDIC. See EBCDIC character set 

character testing functions, runtime 
library, 411 

characteristic, of floating-point 
constants, 54 

characters, 45-49 
alphabetic, 412 
and strings, 183-184 
control, 412 

CTRL-C, 115 
decimal digit, 412 
hexadecimal digit, testing for, 412 
lowercase 

changing to uppercase, 411 
testing for, 412 

printable, 412 
printing, 439 
punctuation, testing for, 412 
pushing back onto a stream, 

ungetc() function, 454 
reading, 448 

!getc() function, 428 
reading with getc(), 435 
reading with getchar(), 435 
signed and unsigned, 45 
space, testing for, 412 
uppercase 

changing to lowercase, 411 
testing for, 412 

591 

writing, fputc() function, 431 
writing to files, putc() function, 444 
writing to stdout, putchar() 

function, 444 
writing with putcO, 444 
writing with putchar(), 444 

checksum function, 117 

cint (C interpreter), listing for, 
519-583 

CLC_TCK macro, 472 

clearerr() function, 345, 427 

clock() function, 473 

clock_t type, 472 

closing a file, 350 
fclose() function, 427 

collating sequences, 413 

comma operator" 137-138 
erroneously used in multidimensional 

array references, 199 

command line arguments, 309 

commands, executing system, systemO 
function, 462 

comments, 27-33 
header, 27 
nested, 28 

common definitions, 229 

comparing strings 
memcmp() function, 465 
strcmp() function, 468 
strcspn() function, 469 
strncmp() function, 468 
strpbrk() function, 469 
strspn () function, 469 

comparison expressions, 82-84 

comparison operators, 82 

compilation, conditional, levels of 
nesting, 495 



www.manaraa.com

592 

compile-time errors, 70 

compiler", 3 

compiling source files, 11-13 
conditionally, 330-334 

complement operator, bitwise ., 144, 
148 

components, of structures. See 
structure members 

compound statements, 85-87, 490 
levels of nesting, 495 

Computer Aided Software Engineering 
(CASE), 395 

computer memory, mailbox analogy 
24 ' 

concatenated tokens, 494 

concatenating strings 
strcat() function, 467 
strncat() function, 467 

concatenation of strings, 187 

conditional branching statements 78 
79-89 ' , 

conditional compilation, 330-334 
levels of nesting, 495 
syntax of directives, 330 

conditional operator ?:, 155-156 

const objects, pointers to, 231 

const storage class modifier, 231, 236 

constant expressions, 119 
in array initializers, 163 
in case labels, 91 
in initializers, 219 
in preprocessor commands, 331 

constants, 21-22 
character, 46, 183-184 

syntax of, 484 
decimal, 47 
defining macros for, 319 
enumeration, 73-74 
float, 54 
floating-point, 52 

scientific notation, 54-57 
syntax of, 483 

fractional, 484 
giving names to, 36, 319 
hexadecimal, 47 
integer, 47-51 

size of, 48 
syntax of, 484 

long, 49 
long double, 54 
naming, 36-38 
octal, 47 
pointer, 232 
string, 179, 183-184 

Index 

maximum number of characters 
in, 496 

symbolic, 36-38 
syntax of, 483 
unsigned, 49 

continuation character \, 33-34, 187, 
317 

continue statement, 111-113 

control characters 
CTRL-C, 115 
testing for, 412 

control flow, 78-117 

control lines, syntax of, 493 

conversion characters 
for printf(), 437-439 
in scanf() function, 447-449 

'conversion specifiers, in printf() 
function, 437 

conversions, 63-71 
array to pointer, 172, 175, 181 
assignment, 63 
automatic. See implicit conversions 
casts, 72 
floating-point to floating-point, 

69-70 
floating-point to integer, 70-77 

129 ' 
implicit, 63 
integer to floating-point, 70 
integer to integer, 65-67 
integral promotions. See integral 

widening conversions 
integral widening, 63 
involving unsigned types, 68 
of function arguments, 285, 291 

turning off, 292 
of numbers to strings, 455-457 
of strings to numbers, 455-457 
quiet. See implicit conversions 
sign extension, 66 
sign-preserving, 68 
signed to unsigned, 67-69 
unsigned to signed, 67 
value preserving, 68 

copying 
files, 350-357 
strings, 187-189 



www.manaraa.com

Index 

copying strings 
memcpy() function, 466 
strcpy() function, 466 
strncpyO function, 466 

cosO function, 262 

coshO function, 417 

cost estimation, 389-394 

CPU time, used by a program, clockO 
function, 473 

ctimeO function, 474 

ctype.h header file, 407, 411 

D 
Dam, A. Van, 382 

dangling else, 89 

data abstraction, 16, 387 

data structures, choosing efficient, 
384-388 

data types, 57-60 
aggregate, 40 
arithmetic, 39 
array, 159-214 
character, 45-47 
declarations. See declarations 
enumeration, 73-74 
floating-point, 52-54 
hierarchy of, 40 
integer, 42-47 
names of predefined, 512 
pointer, 159-214 
scalar 

hierarchy of, 65 
mixing, 63-71 
sizes of, 44 

signed, 45 
structure, 243-264 
union, 271-278 
unsigned, 44-45 

date, of program compilation, 327 

date functions, runtime library, 
472-477 

Date, C. J., 382 

dates, different ways of displaying, 
413 

DBL_DIG macro, 499 

DBL_EPSILON macro, 498 

DBL_MAX macro, 498 

DEL_MIN macro, 498 

debuggers, 399 

debugging, 397-399 
laws of, 398 
using conditional compilation 

feature, 332 

593 

debugging code, adding to source files, 
223 

decimal constants, 47 

decimal digit characters, testing for, 
412 

decimal point., 52 
different representations of, 413 

declaration specifiers, 479 

declarations 
allusions. See allusions 
complex, 310 
composing, 310-313 
decomposing, 310-313 
definitions. See definitions 
forward referencing, 254 
legal and illegal, 313 
of arrays, 160-162 
of bit fields, 256 
of function arguments, 20, 

285-288 
ANSI style, 286 

of functions, 42, 284-295 
of global variables, 226-242 

a portable strategy, 229 
of scalar types, 40-42 
of strings, 180-181 
of structures, 246 
of unions, 271 
scope of, 220-225 
syntax of, 479 
table of, 313 
visibility of, 223 

declarators, 479 
abstract, 482 
number allowed in a declaration, 

495 

decrement operator --, 132-136 
precedence of, 135 

decryption, 166-167 

default initializations, of fixed 
variables, 218 

default label, 90 



www.manaraa.com

594 

#define directive, 36-38, 62, 
317-329 

defined preprocessor operator, 334 

definitions 
common, 229 
of functions, 284 
of global variables, 226-242 
tentative, 227 

dependency lines, 396 

dereference operator ., 58, 156 

designing software, 382-389 
stepwise refinement, 16, 382 
top-down, 16 

development, of programs, 9-14 

diagnostics functions, runtime library, 
410 

difftimeO function, 475 

Dijkstra, E. W., 114 

divO function, 130, 464 

div_t type, 455 

division, integer, 129 

division operator I, 125 

do ... while statement, 97-98 
example of, 530 
syntax of, 98 

documentation, 401-402 

domain errors, 415 

dot operator. See structure member 
operator. 

double quote", 31, 179, 328 

double type specifier, 52 

double values, writing with printfO, 80 

duration, 216-220 
automatic, 216-220 
definition of, 215 
fixed,216-220 
summary of, 235 

dynamic memory allocation, 237-240 

E 
EBCDIC character set, 45, 47, 101, 

167, 413 

echo program, 309 

ecvtO function, 415 

ed text editor, 12 

EDOM macro, 415 

efficiency, 4, 189, 234 
and data structures, 384-388 
and global variables, 225 
and IIO buffering, 343-344 
and maintainability, 225 

Index 

and readability, 189, 191, 204 
in I/O routines, 357 
of arrays, 161 
of recursive calls, 308 
of sorting algorithms, 304 
performance analysis, 401 
register variables, 230-231 
strength reduction optimization, 

209, 211, 249 
using macros for, 320 
using pointers, 189 
using prototypes to gain, 294 

#elif directive, 330, 331 

elif groups, 492 

ellipsis, ... , 295 

#else directive, 330 

else groups, 492 

else if statements, 88 

else keyword, 79 

else statement, dangling, 89 

empty statements. See null statements 

encoding, of files, 166 

encryption, 166-167 

end-of-file condition, testing for, 
feof() function, 427 

end-of-file conditions, 345, 427 

end-of-file indicator, clearing, 
clearerr() function, 427 

#endif directive, 330, 333 

endif lines, 493 

entropy, 398 

en urn specifiers, 481 

enurn type specifier, 73-74, 279 

enumeration types, 73-74 

enumeration variables, declaring, 279 

environment functions, runtime 
library, 460-462 



www.manaraa.com

Index 

environment lists, 462 

environments, saving and restoring, 
420 

EOF macro, 96, 345 

epsilon, 116, 498 

equal to operator ==, 82, 138 
confused with assignment operator 

=, 83 

ERANGE macro, 415, 455 

errno, 346 
definition of, 406 
set by fgetpos() function, 429 
set by fsetpos() function, 433 
set by fteU () function, 434 
set by general utility functions, 455 
set by math functions, 415 
set by signalO, 422 
type of, 409 

error condition, testing for, ferrorO 
function, 428 

error conditions, 428 

#error directive, 337 

error handling 
for 110 functions, 345 
runtime library, 409 

error indicator, clearing, clearerrO 
function, 427 

error messages, strerror() function, 
468 

error recovery, 421 

errors 
domain, 415 
overflow, 415 
printing messages, 436 
printing messages with perror(), 436 
range, 415 
reported during preprocessing, 337 
underflow, 415 

escape character sequences, 33, 
50-53 

syntax of, 485 

evaluation, order of, 123-124 
and side-effects, 136 

executable code, 13 

executable program, 13 

executable statements, 20 

exitO function, 29, 94, 461 

expO function, 416 

expansion, macro, 317 

595 

exponent, in floating-point constants, 
54 

exponent part, of floating-point 
constants, 484 

exponential functions, runtime library, 
416 

expression statements, 490 

expressions, 118-120 
See also operators 
boolean, 82 
assignment, 25 
cast, 72, 487 
comparison, 82 
constant, 119 

in preprocessor commands, 331 
float, 119 
implicit conversions within, 64-65 
integral, 119 
introduction to, 25 
loop-invariant, 234 
omitting in a for statement, 

103-104 
order of evaluation, 123-124, 136 
parenthesized, 122-123 
pointer, 119 
pointer arithmetic, 168-169 
postfix, syntax of, 486 
primary, 486 
syntax of, 485 

Extended Binary-Coded Decimal 
Interchange Code. See EBCDIC 
character set 

extern storage class specifier, 29, 
226, 228, 235, 236, 289, 335 

external names. See global variables 

F 
fabsO function, 419 

failure values, returned from functions, 
190 

false values, 82 

fcloseO function, 427 

fe1ltO function, 415 

feofO function, 345, 352, 427 

ferror() function, 345, 355, 428 

f/lush() function, 344, 428 



www.manaraa.com

596 

fgetcO function, 351, 428 

fgetposO function, 428-429 

fgets() function, 353-354, 429 

field widths 
in printf() function, 442 
in scanf() function, 449 

fields, of structures. See structure 
fields 

file access modes, 430 

file names, in #include directive, 335 

file pointers, 342 

file position indicator, 342 
getting value of, ftellO function, 

434 
setting 

fseek () function, 433 
fsetpos() function, 433 

file position indicators, moving to start 
of file, rewindO function, 446 

file scope, 220-222, 224-226 
examples of, 267, 528 

FILE structure, 341 

filenames 
.c extensions, 12 
.h extension, 13 
.0 extensions, 12 
setting compiler's knowledge of, 336 

files 
appending to, 430 
binary, 430 
closing, fclose() function, 427 
creating, fopen() function, 430 
object, linking together, 395 
opening, fopen () function, 429 
reading 

fgetc() function, 428 
fgets() function, 429 
fread() function, 432 
fscanf() function, 433 
getc() function, 435 
scanf() function, 446 

reading from, 430 
removing, 445 
renaming, 445 
reopening, frepoen () function, 432 
temporary 

tmpfile() function, 453 
tmpnam() function, 453 

text, 430 
writing to, 430 

fprintfO function, 431 

fputc() function, 431 
fputsO function, 432 
fwriteO function, 435 
putc() function, 444 
putsO function, 445 

Index 

First In, Last Out (FILO) queues, 280 

fixed duration, 216 
and recursion, 308 
initialization of variables with, 

217-219 
using variables with, 219-220 

flag characters 
printfO function, 441 

flags 
end-of-file, 345 
error, 345 

float constants, 54 

float expressions, 119 

float type specifier, 52 

float. h header file, 406, 496 

floating-point constants, 52 
scientific notation, 54-57 
syntax of, 483 

floating-point exception signal, 
SIGFPE macro, 423 

floating-point expressions, rounding 
of, 139 

floating-point overflow, 69 

floating-point types, 52-54 
characteristics of, 498 
mixing, 69-70 
mixing with integer types, 70-77 
printing, 438 
reading, 447 

floating-point values 
comparing, 139 
converting strings to 

a/of 0 function, 456 
str/odO function, 456 

fractional part of, 416 

floor() function, 419 

flow utility, 395 

FLT_DIG macro, 498 

FLT_EPSILON macro, 498 

FLT_MAX macro, 498 

FLT_MIN macro, 498 

flushing 110 buffers, 428 

fmodO function, 419 



www.manaraa.com

Index 

Foley, 382 

jopen() function, 347-350, 429-431 

for statement, 99-103 
advantages of, 102 
omitting expressions in, 103 
syntax of, 99 

form feed, escape character sequence 
\f, 50 

formal arguments, 19,281, 282 
assigning values to, 250 

formal parameters. See formal 
arguments 

format modifiers, in printj() function, 
437 

formatting source files, 26-28, 87 
indentation, 81 
preprocessor lines, 317 

FORTRAN programming language, 
80, 161, 199 

forward referencing, of structures, 254 

jprintj() function, 348, 431 

jputc() function, 351, 431 

jputs() function, 353-354, 432 

fractional constants, syntax of, 484 

fractional part, of floating-point 
values, 416 

jread () function, 354-361, 432 

jree() function, 238, 459 
example using, 269 

jreopen () function, 432-433 

jrexpO function, 416 

jscanj() function, 433 

jseekO function, 360-361, 433-434 

jsetpos() function, 433 

jtell() function, 360-361, 434 

function allusions, 288-290 
scope of, 290 
syntax of, 289 

function body, 18-20, 286 

function calls, 29, 284-295 
syntax of, 291 
testing status of, 410 
using pointers to functions, 

298-306 

function definitions, 284 
syntax of, 284-285, 478 

597 

function invocations. See function calls 

function prototypes, 292-295 
examples of, 522-527 

function return values 
pointers to functions, 297, 304-306 
structures, 262 

function scope, 220-222, 224 

functional specification, 392 

functions, 11, 281-315 
allusions to, 284 
anatomy of, 18-26 
arguments to, 19 

See also arguments 
calling, 16, 29 
conversion to pointers, 295 
declarations of, 284-295 
declaring return type of, 42 
default return type of, 284 
definition of, 14, 284 
invocations of. See function calls 
invoking, 16 
main(), 28 
names of, 19 
passing as function arguments, 285, 

286 
pointers to, 295-306 

aSSigning vlaues to, 296-297 
calling functions using, 298-306 
dereferencing, 299 
example using, 300-306 
passing as arguments, 302 
return type agreement, 297 
returning, 304-306 

prototypes of. See function 
prototypes 

recursive, 306-309 
return type of, 284 
return value of, 284, 286-288 
storage class of, 290 
value of, 14-18 
vs. macros, 324 

jwrite() function, 354-361, 435 

G 
gaps, in structures, 254 

garbage values, 163, 218 

gc"t() function, 415 

generic pointers, 240 



www.manaraa.com

598 

getcO function, 351, 352, 408, 435 

getcharO function, 96, 435 

getenvO function, 462 

getsO function, 193, 436 

global names 
maximum number in one source 

file, 496 
number of Significant characters in, 

496 

global variables, 220, 225-229 
a portable strategy for declaring, 

229 
allusions to, 226 
definitions of, 226-242 
initialization of, 335 
naming rules for, 226 
non-ANSI strategies for declaring, 

228-229 

gmtime(} function, 475 

goto statement, 113-114 
acceptable use of, 278, 531 

greater than operator >, 82, 138 

greater than or equal to operator >=, 
82, 138 

grep utility, 395 

group parts, 491 

grouping, of operators, 121, 122 

H 
hardware, definition of, 1 

hash tables, 386 

header comments, 27 

header files, 13, 335, 396 
and maintainability, 228 
assert.h, 407 
ctype.h,407 
float. h, 406 
for runtime library, 406-407 
limits. h, 406 
locale.h, 407, 413 
macro definitions in, 323 
math.h, 407, 415 
setjmp. h, 407, 420 
signal.h, 407, 422 
stdarg. h, 407, 425 
stddef. h, 406 
stdio. h, 407 

stdlib. h, 407, 455 
string. h, 407, 465 
time.h, 407, 472 

Index 

heap sort algorithm, 304 

hexadecimal constants, 47 

hexadecimal digit characters, testing 
for, 412 

hexadecimal numbers 
reading and writing, 48 
table of, 147 

hierarchies 
of programming components, 15 
of scopes, 221 

hierarchy 
of data types, 40 
of scalar data types, 65 

high-level programming languages, 2, 
3-5 

advantages of, 5 

hobgoblin, of software engineers, 16 

Hofstadter, Douglas, 38 

holes, in structures, 254 

Hopper, Lieutenant Grace, 397 

horizontal tab, escape character 
sequence \t, 50 

HUGE_VAL macro, 415, 455 

human languages, 2, 3 

hyperbolic cosine, cosh 0 function, 
417 

hyperbolic functions, runtime library, 
416 

hyperbolic sine, sinh(} function, 417 

hyperbolic tangent, tanh () function, 
417 

I 
110 functions, runtime library 

functions, 427-454 

1/0, 340-372 
binary format, 342-343 
buffering, 340, 343-344 
closing a file, 350 
efficiency, 357 
end-of-file conditions, 345 
error handling, 345-346 
file pointers, 342 



www.manaraa.com

Index 

file position indicator, 342 
granularity of, 350 
opening a file, 347-350 
random access, 360-371 
reading data, 350-357 
streams, 341-343 
text format, 342-343 
unbuffered, 359 
writing data, 350-357 

idempotent header files, 406 

identifiers 
See also names 
syntax of, 483 

#if directive, 330 

if groups, 492 

if sections, 492 

if statement, 79-81 
nested, 88 

#ifder directive, 333 

#Ifnder directive, 333 
example using, 525 

implementation dependencies, sizes of 
objects, 154 

implementation limits, 495-499 

implicit conversions, 63 
in expressions, 64-65 

#include directive, 13, 34-36, 
335-336 

maximum levIes of nesting, 496 

including header files, 13 

including source files, 34-36, 
335-336 

increment operator ++, 96, 132-136 
applied to pointers, 186, 188 
applied to subscripts, 188 
postfix, use of, 309 
precedence of, 135-144 

indentation, 81 
misleading, 87 
with nested loops, 108 

index, 362 

index sort, 362 

infinite loops, 114-115, 177 

information hiding, 388 
source listing, 523 

initial element, of an array, 160 

initialization 
of arrays, 163-165 
of enum constants, 73 
of global variables, 227, 335 
of multidimensional arrays, 197 
of nested structures, 252 
of scalar types, 55 
of strings, 180-181, 184 

memset() function, 466 
of structures, 247 
of unions, 275 
of variables with automatic 

duration, 217-219 
of variables with fixed duration, 

217-219 

initializations, default, 218 

initialized declaration lists, 482 

input and output. See 110 

instruction set, 1 

599 

instructions, illegal, SIGILL macro, 
423 

int type, 42 
size of, 42 

tnt type specifier, 44 

INT_MAX macro, 497 

INT_MIN macro, 497 

integer arithmetic functions, runtime 
library, 463 

integer constants, 47-51 
size of, 48 
syntax of, 484 

integer division, sign of result, 129 

integer overflow, 66 

integers 
and characters, 45-49 
and pointers, 168-169, 172 
converting strings to, atoiO 

function, 456 
different types of, 42-47 
largest, floorO function, 419 
mixing in expressions, 65 
mixing with floating-point values, 

70-77 
printing, 438 
reading, 447 
smallest, ceil 0 function, 419 
unsigned, 44-45 

integral expressions, 119 

integral promotions. See integral 
widening conversions 



www.manaraa.com

600 

integral widening conversions, 63 

interpreter, 3, 374 

interrupt signal, SIGINT macro, 423 

invocation, of macros. See macro 
expansion 

isalnum() function, 412 

isalpha() function, 412 
example of, 84 

iscntrl() function, 412 

isdigit() function, 412 

isgraph () function, 412 

islower() function, 412 

isprint() function, 412 

ispunct() function, 412 

isspace() function, 105, 412 

isupper() function, 412 

isxdigit() function, 412 

iteration statements, 78 
levels of nesting, 495 
syntax of, 491 

iterative statements. See looping 
statements 

J 
jmp_bu/ type, 420 

jump statements, syntax of, 491 

justification, in print/() function, 437 

K 
K&R standard, 6 

K&R standard, differences from ANSI 
Standard, 500-511 

K&R strategy, for declaring global 
variables, 228 

Kanji language, 46 

Kernighan, Brian, 6 

key, 362 

keywords, 19, 512 
for scalar types, 41 

Index 

list of, 23 

Knuth, Donald, 304, 387 

L 
L_tmpnam macro, 453 

labeled statements, syntax of, 490 

labels 
case, 90 
default, 90 
statement, 113, 224 

labs() function, 464 

languages 
assembly, 2 
human, 2,3 
machine, 1 
programming. See programming 

languages 

LC_ALL macro, 413 

LC_COLLATE macro, 413 

LC_NUMERIC macro, 413 

LC_TIME macro, 413 

LC_TYPE macro, 413 

LDBL_DIG macro, 499 

LDBL_EPSILON macro, 498 

LDBLJ1AX macro, 498 

LDBL_MIN macro, 498 

Idexp() function, 418 

Idiv() function, 464-465 

Idiv_t type, 455 

left shift assign operator «=, 152 

left shift operator «, 144-146 

less than operator <, 82, 138 

less than or equal to operator <=, 82 

lexical analysis, 21 

libraries, runtime, 13-20 

lifetime of a variable. See duration 

limits 
defined by implementations, 

495-499 
numerical, 495, 496-499 
translation, 495-496 

limits.h header file, 406, 496 



www.manaraa.com

Index 

line buffering, 452 

line control, 336-338 

#line directive, 336 

line number, setting compiler's 
knowledge of, 336 

line-buffering, 344 

linked lists, 264-271 
adding elements to, 267-268 
creating, 266 
deleting an element from, 269-270 
imding an element in, 270-272 
inserting an element in, 268-269 
symbol tables as, 385 

linkers, 13 

linking, global variables, 229 

linking object files, 13 

lint utility, 395 

LISP programming language, 308 

literals. See constants 

loaders, 13 

loading a program, 13 

local variables, 217 

locale parameters, runtime library, 
413-414 

locale.h header file, 407, 413 

localtimeO function, 475 

log100 function, 418 

logarithmic functions, runtime library, 
416 

logarithms, loglOO function, 418 

logical bitwise operators, 146-158 

logical operators, 140-144 
truth table for, 141 

long constants, 49 

long double constants, 54 

long double type specifier, 53 

long int type specifier, 44 

long ints, converting strings to 
atolO function, 456 
strtolO function, 457 

long type specifier, 43 

LONG_MAX macro, 497 

LONG_MIN macro, 497 

longjmpO function, 420 

loop-invariant expressions, 234 

looping statements, 78, 95-107 

loops 
infinite, 114, 177 
nested, 107-109 

lowercase characters 
changing to uppercase, 411 
testing for, 412 

lvalues, 25, 128 

M 
machine instructions, 15 

machine language, I, 2, 3 

601 

macro arguments, maximum number 
of, 496 

macro body, 317 

macro expansion, 317 

macro names, maximum number of 
simultaneously defined, 496 

macro parameters, 494 

macros, 36-38, 317-329 
advantages of, 324 
arguments to, 319 

binding of, 326 
no type-checking for, 321-323 
side-effects in, 325 

body of, 317 
built-in, 326-329 
calling, 317 
defining, 317 
disadvantages of, 325 
expansion of, 317 
names of, 317, 319 
names of predefined, 512 
recursive, 324 
runtime library functions 

implemented as, 408-409 
syntax of, 320 
testing existence of, 333 
undefining, 323 
vs. functions, 324-326 

mailbox analogy, for computer 
memory, 24 

mainO function, 28-31, 309-310 

mainatainability, and header files, 228 



www.manaraa.com

602 

maintainability, 4, 16, 374 
and efficiency, 225 
and relational expressions, 143 
assigning to formal parameters, 250 
block scope, 223 
file scope, 225 
naming conventions, 22 
using constant names, 319 
using enumerations, 202 
using header files, 335 
using macros, 37 

maintenance, software, 398 

maintenance mode, 397 

make utility, 395-398 

makefiles, 396 

malloc() function, 238, 460 
ANSI version, 240 
example using, 239 
old style, 240 

mantissa, in floating point constants, 
54 

masking, 148-149 

math functions, runtime library, 
415-419 

math.h header file, 407, 415 

members, of structures. See structure 
members 

memchr() function, 465 

memcmp() function, 465 

memcpy() function, 466 

memory, mailbox analogy, 24 

memory allocation 
calloc() function, 459 
dynamic, 237-240 
free() function, 459 
malloc() function, 460 
of arrays, 162, 177 
of automatic variables, 216 
of bit fields, 256 
of integers, 43 
of multidimensional arrays, 196 
of stack space, 308 
of strings, 180 
of structures, 254-256 
of unions, 272 
realloc() function, 460 

memory management functions, 
runtime library, 459-460 

memory operators, 156 

memory storage. See memory 
allocation 

memset() function, 466 

merge sort algorithm, 304 

milestones, 377 

minus operator, unary -, 124 

mktime() function, 473-474 

modfO function, 418 

modularity, 390 

modules, 225, 382 

Index 

modulus operator. See remainder 
operator 

most significant bit (MSB), 43 

MS/DOS operating system, 5 

multidimensional arrays, 195-202 
example of, 201-202 
initializing, 197-199 
passing as function arguments, 

199-201 

multiplication operator *, 20, 125 

multiplicative operators, 125 

N 
name spaces, of structs and unions, 

253 

names, 22-24 
array, interpretation of, 172 
beginning with underscore, 513 
case-sensitivity of, 22 
choosing meaningful, 23 
conflicting, 222, 223 
external. See global variables 
global, number of significant 

characters in, 496 
legal and illegal, 22 
maximum length of, 23 
maximum number per block, 496 
naming conventions, 22, 23, 36, 41 
number of significant characters in, 

496 
of arguments, 19 
of arrays, 173 
of constants, 36-38 
of functions, 19 
of global variables, 226 
of macros, 317, 319 
of predefined macros, 512 
of predefined types, 512 



www.manaraa.com

Index 

of preprocessor directives, 512 
of runtime functions, 512 
of runtime library functions, 406 
of structure and union members, 

253 
of structure members, 245 
reserved, 512 
scope of, 220-225 
visibility of, 222, 223 

natural alignment, 255 

NDEBUG macro, 410 

negation operator, logical I, 140 

negative numbers, 47 
representation of, 43 

nested comments, 28 

nested expressions, maximum number 
of levels, 496 

nested if statements, 88-90 

nested loops, 107-109 

nested structures, 251 
initialization of, 252 

nesting, minimum number of levels, 
495 

newlines 
escape character sequence \n, 30. 

50 
used to end preprocessor lines, 317 
in text files, 342 

non-local jumps, runtime library. 
420-421 

not equal to operator 1=. 82. 138 

Not Invented Here (NIH) syndrome. 
391 

NP-complete problems, 404 

null character \0, 50, 179 
and printfO function. 184 
inserted by fgetsO. 353 

NULL macro, 345, 409 

null pointers. 169 
example using. 267 
in initializers. 209 

null statements, 105-107 

numerical limits. 495. 496-499 

o 
object code. 13 

object files. 11 
linking together. 13. 395 

octal constants. 47 

octal numbers 
reading and writing. 48 
table of, 147 

603 

off-by-one errors. 104 

omitted-extern strategy. for declaring 
global variables, 228 

one's complement notation. 44 

opening a file, 347-350 

opening files, fopenO function. 429 

operands. 64, 118-120 

operating systems, 5 
UNIX. See UNIX operating system 

operators. 118-120. 123-126 
additive. 125 
address of, 56 
address of &. 297 
assignment, 128-132, 489 

bitwise, 152 
associativity of. 120. 121-124 
binary. 64. 82. 488 
binary arithmetic. 125-128 
bit manipulation, 144-152 
bitwise assignment. 152 
cast. 72, 152-153 
comma. 137-138 
comparison, 82 
conditional, 155-156 
decrement. 132-136 
grouping of operands to. 121-122 
increment. 132-136 
introduction to, 25 
list of. 120 
logical. 140-144 
logical bitwise, 146-158 
memory, 156 
multiplicative, 125 
pointer arithmetic. 168-169 
postfix. 132 
precedence of. 120-124 
prefix. 132 
relational. 82. 138-139 

side-effects in. 142 
shift. 144-146 
side-effect. 136 
sizeof, 154-155. 175. 179 



www.manaraa.com

604 

unary, 64, 487 
unary arithmetic, 124-125 

optimizations 
See also efficiency 
performed by the compiler, turning 

off, 233-234 
strength reduction, 249 

OR operator 
bitwise exclusive A, 144, 148 
bitwise inclusive I, 147 
bitwsie inclusive I, 144 
logical II, 140 

order of evaluation, 123-126 
and side-effects, 136 

output. See 110 

overflow conditions, 71, 124 
floating-point, 69 
integer, 66 

overflow errors, 415 

p 
padding, in print!O function, 442 

parameter type lists, 482 

parameters. See arguments 

parentheses, 122-123 
function call, 29 
in macro definitions, 326 

parenthesized expressions, 122-123 

Pascal programming language, 8, 80, 
82, 199 

pass by reference, 259, 281, 282 

pass by value, 259, 281, 282, 283 

passing function arguments, 281-283 

pasting, of tokens, 329 

pattern matching, 189-193 
strstrO function, 469 

performance analysis, 401 

perrorO function, 409, 436 

planning a software project, 391-393 

plus operator, unary +, 124 

pointer arithmetic, 168-169, 172 
subtraction, 168 

pointer expressions, 119 

pointers, 159-214 
and arrays, 172-173 
and integers, 168-169, 172 
arrays of, 202-207 
constant, 232 
declaration of, 57 
dereferencing, 58-60 
generic, 240 
initializing, 60 
introduction to, 57-60 
null, 169 

Index 

passing as arguments, 169-171, 
232 

printing, 439 
reading, 448 
to char, initializing, 180 
to const objects, 231 
to functions, 295-306 

assigning values to, 296-297 
calling functions using, 298-306 
dereferencing, 299 
example using, 300-306 
passing as arguments, 302 
return type agreement, 297 
returning, 304-306 

to pointers, 206-211 
to structures, 246, 248, 253 
to void, 240 

See also generic pointers 
type compatibility of, 57, 168-169, 

288 

popping, off of a stack, 280 

portability, 3, 374 
and bit fields, 256, 258 
and bit shifting, 146 
and pointers to functions, 299 
global declarations, 229 
of standard 110 functions, 343 
of structures, 255 
using slzeof for, 179 

Portable C Compiler (PCC), 6 

porting, 5 

postfix expressions, syntax of, 486 

postfix operators, 132 

pound sign #, 34 

pow() function, 153, 418 

powers, powO function, 418 

powers of two, ldexpO function, 418 

#pragma directive, 338 

precedence, of operators, 120, 
121-124 

precision, 52, 116 



www.manaraa.com

Index 

loss of, 69, 70 
of floating-point numbers, 52, 498 

precision specifiers, in printfO 
function, 443 

prefix increment operator, 188 

prefix operators, 132 

preprocessor, 316-339 
control lines, syntax of, 493 
#deflne directive, 36-38, 62, 

317-329 
#elif directive, 330 
#else directive, 330 
#endif directive, 330, 333 
#error directive, 337 
#if directive, 330 
#ifdef directive, 333 
#ifndef directive, 333 
#include directive, 34, 335 
introduction to, 34-37 
#line directive, 336 
macro parameters, 494 
macros, 317-329 

See also macros 
arguments to, 319 
syntax of, 320 

names of directives, 512 
#pragma directive, 338 
stringizing, 328-333 
token pasting, 329 
tokens, 494 
#undef directive, 323 

primary expressions, 486 

primitives, 16 

printable characters, testing for, 412 

print!() function, 31-33, 436-444 
writing strings, 184 

private types, 388 

procedures, 14 

product building, automatic, 395-398 

product specification, 376-382 

pro! utility, 395 

profiling, 401 

program development, 9-14 

program execution, terminating 
abort() function, 460 
exit() function, 461 

program scope, 220-222, 224-226 
See also global variables 

program start-up, 218 

program termination 
atexit() function, 461 
exit() function, 461 

programming languages 
high-level, 2, 3-5 
systems, 5 

programs, batch, 377 

project management, 389-394 

project planning, 391-393 

Prolog programming language, 308 

prototypes, 322 
See also function prototypes 

pseudo-code, 17 

punctuation characters, testing for, 
412 

pushing, onto a stack, 280 

putc() function, 351, 408, 444 

putchar() function, 444-445 

puts() function, 445 

Q 
qsort() function, 303, 365, 463 

quicksort algorithm, 304 

quiet conversions. See implicit 
conversions 

quote 
double ", 31, 179, 328 

surrounding filenames, 335 
single', 46 

quotient, Idiv () function, 464 

quotients, div () function, 464 

R 
raise () function, 424 

randO function, 458 

RAND_MAX macro, 455, 458 

random access, 110, 360-371 

random number functions 
randO function, 458 
runtime library, 458 

605 



www.manaraa.com

606 

srand () function, 459 

range errol's, 415 

Rationale Document, ANSI, 7 

readability, 3, 16, 26, 189, 374 
and efficiency, 189, 191, 204 
and for statements, 138 
and pointers, 189 
and void type, 284 
block scope, 223 
declaring functions, 289 
formatting. See formatting source 

files 
naming conventions, 22 
nested structures, 252 
of array initializers, 198 
of formal array argunient 

declarations, 174 
of recursive calls, 308 
using arithmetic assignment 

operators, 130 
using break statements, 112 
using logical operators, 143 
using macros, 36 
vs. typing ease, 377 

reading, strings, 184-185 

reading files, 350-357 
fgetc() function, 428 
fgets() function, 429 
fread () function, 432 
fscanf() function, 433 
getc() function, 435 
scanf() function, 446 

reaUoc() function, 238, 460 

recursion, 306-309 
efficiency of, 308 
example of, 528 
of macros, 324 

redundancy, needless, 16 

register storage class specifier, 
230-231, 235, 285 

register variables, 230-231 

registers, 230 

relational expressions, side-effects in, 
142 

relational operators, 82, 138-139 

remainder 
dill() function, 464 
ldill() function, 464 

remainder function, fmod (), 419 

Index 

remainder operator %, 125, 126-135 
sign of result, 129 

remolle() function, 445 

rename() function, 445 

reserved keywords, 19 

reserved names, 512-518 

return statement, 20, 29, 286 
used to exit a switch statement, 

91-94 

return type, of functions, default, 284 

return value of functions, 284, 
286-288 

rewind() function, 446 

right shift assign operator »=, 152 

right shift operator », 144-146 

right-arrow operator. See strucutre 
member operator -> 

Ritchie, Dennis M., 5 

rounding, of floating-point 
expressions, 139 

runtime errors, 70 
running out of stack memory, 307 

runtime library, 13-20 
character handling functions, 

411-412 
case mapping, 411 
character testing, 411 

date and time functions, 472-477 
diagnostics functions, 410 
error handling, 409 
functions vs. macros, 408-409 
general utilities, 455-464 

environment functions, 460-462 
integer arithmetic functions, 463 
memory management functions, 

459-460 
random number functions, 458 
searching and sorting functions, 

462 
string conversion functions, 

455-456 
header files, 406-407 
110, 427-454 
locale parameters, 413-414 
math, 415-419 

exponential functions, 416 
hyperbolic functions, 416 
logarithmic functions, 416 
trigonometric functions, 416 

names of functions, 406, 512 
non-local jumps, 420-421 



www.manaraa.com

Index 

signal handling, 422-424 
string handling functions, 465-471 
synopses of functions, 407 
variable argument lists, 425-426 

rvalues, 25 

s 
scalar data types 

hierarchy of, 65 
mixing in expressions, 63-71 
sizes of, 44 

scaling, in pointer arithmetic, 
168-169, 250 

scan lists, in seanf() function, 449 

seanf() function, 33-34, 283, 446 
reading strings, 184 

sees, UNIX source control utility, 
394-395 

SCHAR_MAX macro, 497 

SCHAR_MIN macro, 497 

scientific notation, 54-57 

scope, definition of, 215 

scopes, 220-225 
block, 220-222, 223 
file, 220-222, 224-226 

example of, 267 
function, 220-222, 224 
global, 220, 224-229 
of function allusions, 290 
of function arguments, 224 
program, 220-222, 224-226 

See also global variables 
summary of, 235-237 

searching functions, runtime library, 
462 

security techniques, 166 

SEEK_CUR macro, 360, 434 

SEEK_END macro, 360, 434 

SEEK_SET macro, 360, 434 

segment violation signal, SIGSEGV 
macro, 423 

selection statements, syntax of, 490 

self-referencing structures, 253-254, 
266 

semicolon ;, 20 

misplaced, 106 

setbufO function, 359, 451 

setjmp. h header file, 407, 420 

setjmp() function, 420 

setloeale() function, 413, 414 

setvbufO function, 359, 451-452 

shift operators, 144-146 

Shore, John, 373 

short lnt type specifier, 44 

short type specifier, 43 

SHRT _MAX macro, 497 

SHRT_MIN macro, 497 

side-effects, 136 
in expressions, 131 
in macro arguments, 325 
in relational expressions, 142 

SIG_DFL macro, 423 

SIG_ERR macro, 423 

SIGjGN macro, 423 

SIGABRT macro, 423, 461 

SIGFPE macro, 423 

SIGILL macro, 423 

SIGINT macro, 423 

sign bit, 43 

sign extension, 66 

sign-preserving conversions, 68 

signal handling functions, runtime 
library", 422-424 

signal. h header file, 407, 422 

signal () function, 422-424 

signals 
abort, SIGABRT macro, 423 

607 

and setjmp() and longjmp() , 421 
floating-point exception, SIGFPE 

macro, 423 
ignoring, SIGjGN macro, 423 
illegal instruction, SIGILL macro, 

423 
interrupt, SIGINT macro, 423 
segment violation, SIGSEGV macro, 

423 
sending, raise() function, 424 
termination, SIGTERM macro, 423 

signed char type specifier, 44 

signed type specifier, 45 



www.manaraa.com

608 

signed types, mixing with unsigned 
types, 67-69 

S/GSEGV macro, 423 

SIGTERM macro, 423 

sinO function, 262, 417 

single quote " 46 

sinh 0 function, 417 

sizeof operator, 154-155 
applied to arrays, 163, 175 
used for portability, 179, 365 

smallest integer, cei/O function, 419 

software, definition of, 1 

software design, 382-389 

software maintenance, 398 

software portability, 3 

software tools, 395-397 

sort routine, generalized, 300-306 

sorting algorithms, 176-179 
bubble sort, 176, 300 
heap sort, 304 
index sort, 362 
merge sort, 304 
quicksort, 304 

sorting functions, runtime library, 462 

source files, 11 
compiling, 11 
formatting, 26-28 

indenting, 81 
maximum number of characters per 

line, 496 
syntax of, 478 

source management, 394 

space characters, 26 
testing for, 412 

specification, of products, 376-382 

specifications, functional, 392 

sprintf() function, 415, 452 

sqrt() function, 419 

square roots, sqrt() function, 419 

srand() function, 459 

sscanf() function, 452 

stacks, 280 
running out of memory for, 307 

standard streams, 342 

start-up, of programs, 218 

statement labels, 113 
scope of, 224 

statements 
assignment, 20, 25-26 
block, 85 
break, 91, 111-113 
compound, 85-87, 490 
conditional branching, 78 
continue, 111-113 
do, .. while, 97 

syntax of, 98 
else if, 88 
executable, 20 
expression, 490 
fo)', 99-103 

advantages of, 102 

Index 

omitting expressions in, 103 
syntax of, 99 

goto, 113-114 
if, 79-81 
iteration, 78 

syntax of, 491 
iterative, 78 
jump, syntax of, 491 
labeled, 113 

syntax of, 490 
looping, 95-107 
nested if, 88 
null, 105-107 
!'eturn, 29, 91 
selection, syntax of, 490 
switch, 89-94 

syntax of, 90 
syntax of, 489 
while, 95-97 

syntax of, 95 

s ta tic storage class specifier, 
216-217, 221, 224-225, 
235-236, 289 

and array initialization, 165 
dual meanings of, 225 

stdarg. h header file, 407, 425 

stddef.h header file, 345, 406, 409 

stderr, 342 

stdin, 342 
reading from 

getchar() function, 435 
gets() function, 436 

stdio.h header file, 341, 345, 407 

stdlib. h header file, 407, 455 



www.manaraa.com

Index 

stdout, 342 
writing to 

printfO function, 436-444 
putcharO function, 444 

stepwise refinement, 16, 382 

storage class modifiers, 231 
const, 236 
volatile, 233-234, 236 

storage class specifiers 
auto, 217, 235-236 
extern, 29, 226, 228, 235-236, 

289, 335 
register, 230-231, 235, 285 
static, 165,216-217,221, 

224-225, 235-236, 289 
dual meanings of, 225 

syntax of, 480 

storage classes 
definition of, 216 
of functions, 290 
summary of, 235-237 

storage specifiers, omitted, 236 

straight line programs, 78 

strcatO function, 467 

strchrO function, 468 

strcmpO function, 208, 468 

strcollO function, 413, 467 

strcpy() function, 466 
examples of, 187-189 

strcspn 0 function, 469 

streams, 341-343 
standard, 342 

strength reduction optimization, 211, 
249 

strerrorO function, 409, 468 

strftimeO function, 413, 475-477 

string constant, 179 

string constants, 183-184 
maximum number of characters in, 

496 

string conversion functions, runtime 
library, 455-456 

string functions, table of, 194 

string handling functions, runtime 
library, 465-471 

string literal, 179 

string. h header file, 407, 465 

stringized tokens, 494 

stringizing, 328-333 

strings, 179-194 
arrays of, 203 
assigning, 184 
assignments, 181 
collating, strcollO function, 467 
comparing 

memcmpO function, 465 
strcmpO function, 468 
strcspnO function, 469 
strncmpO function, 468 
strpbrkO function, 469 
strspn 0 function, 469 

concatenating 
strcatO function, 467 
strncatO function, 467 

concatenation of, 187 

609 

converting to numbers, 455-456 
copying, 187-189 

memcpyO function, 466 
strcpyO function, 466 
strncpy() function, 466 

declaring, 180-181 
dividing into tokens, strtok() 

function, 470 
finding characters in 

strchr() function, 468 
strrchr() function, 469 

finding values in, memchrO 
function, 465 

initialization of, 184 
initializing, 180, 184 

memset() function, 466 
interpreted as pointer, 181 
length of, 185-187 
memory allocation of, 180 
pattern matching, 189-193 

strstrO function, 469 
printing, 439 
producing with preprocessor operator 

#, 328-333 
reading, 184-185, 448 

fgets() function, 429 
reading formatted data from, 

sscanf() function, 452 
reading with gets 0 , 436 
vs. chars, 183-184 
writing, 184-185 

fputsO function, 432 
writing formatted data to, sprintf() 

function, 452 
writing to files, putsO function, 445 

strlen () function, example of, 
185-187 



www.manaraa.com

610 

strncatO function, 467-468 

strncmpO function, 468 

strncpyO function, 466 

Stroustrup, Bjarne, 231, 292 

strpbrkO function, 469 

strrchrO function, 469 

strspn 0 function, 469 

strstrO function, 469 

strtodO function, 456 

strtokO function, 470-471 

strtoZ 0 function, 457 

strtouZO function, 458 

struct type specifier, 246 
name space of, 253 

structure fields, 244 

structure member operator., 247 

structure member operator ->, 248 

structure members, 244 
alignment of, 254-256 
bit fields. See bit fields 
naming, 245 
referencing, 247-248 
syntax of declarations of, 480, 481 

structure specifiers, 481 

structure templates, 245 

structures, 243-264 
arrays of, 245, 248-251 
bit fields . See bit fields 
declaring, 246 
forward referencing of, 254 
initializing, 247 
linked list application. See linked 

lists 
memory allocation of, 257 
nested, 251-253 
passing as function arguments, 

259-261 
vs. passing arrays, 261 

pointers to, 246, 248, 253 
portability of, 255 
returning from functions, 262 
self-referencing, 253-254, 266 
storage of, 245 

stubs, 286 

sub expressions , 64 

subroutines, 14 

subscripting, 159, 161 

subtraction, of pointers, 168 

subtraction operator -, 125 

switch statement, 89-94 

Index 

maximum number of case labels, 
496 

syntax of, 90-95 

symbol tables, 384 

synopses, of runtime library functions, 
407-408 

syntax, of ANSI C, 478-494 

system commands, executing, system 0 
function, 462 

system () function, 462 

systems programming language, 5 

T 
tab 

horizontal \t, 50, 107 
vertical \v, 50 

tag names 
enumeration, 279 
structure, 245 

tanO function, 262, 417 

tanhO function, 417 

Tannenbaum, A., 382 

technical writers, 401 

templates, in structure declarations. 
See structure templates 

temporary files 
tmpJileO function, 453 
tmpnam () function, 453 

tentative definitions, 227 

terminating a program 
abortO function, 460 
exitO function, 461 

termination signal, SIGTERM macro, 
423 

test engineering, 400 

test suites, 400 

testing software products, 400 

text format, 342-343 

Thompson, Ken,S 



www.manaraa.com

Index 

time, of program compilation, 327 

time functions, runtime library, 
472-477 

time. h header file, 407, 472 

timeO function, 473 

time_t type, 472 

times, different ways of displaying, 
413 

tm type, 472 

TMP _MAX macro, 453 

tmpfileO function, 453 

tmpnam() function, 453 

token pasting, 329 

tokens, dividing strings into, strtok 0 
function, 470 

tolowerO function, 47, 411 

tools, for software production, 
395-397 

top-down design, 16 

toupperO function, 47, 411 

translation limits, 495-496 

travelling salesman problem, 404 

tree structure, 123 

trees, binary, 385 

trigonometric functions, runtime 
library, 416 

trigraph sequences, 51 

true values, 82 

two's complement notation, 43-44 

type conversions. See conversions 

type declarations. See declarations 

type matching, of enum variables, 73 

type specifiers 
char, 46, 47 
double, 52 
enum, 73-74, 279 
float, 52 
int, 42, 44 
long, 43 
long double, 53 
long int, 44 
short, 43 
short int, 44 
slgned,45 

signed char, 44 
struct, 246, 253 
syntax of, 480 
union, 253 
unsigned, 45, 67-69 
unsigned char, 44 
unsigned long, 44 
unsigned short, 44, 61 
vold,74-75 

611 

used as function return type, 284 

type-checking 
none for macro arguments, 321 
of function arguments, 292 
of function return values, 287 

typedefs, 61-62 
confusing with #deflne, 62 
for structures, 246 

examples of, 525 
used to simplify declarations, 310 

example of, 525 

u 
UCHAR_MAX macro, 497 

UCHAR_MIN macro, 497 

UINT _MAX macro, 497 

Ullman, 382 

ULONG_MAX macro, 458, 497 

unary arithmetic operators, 124-125 

unary minus operator -, 124 

unary operators, 64, 487 

unary plus operator, 124 

unbuffered 110, 359, 452 

#under directive, 323, 408 

undefined values, 162 

underflow errors, 415 

underscore character _, 23 
macro names beginning with, 326 
names beginning with, 513 

ungetc() function, lOS, 454-455 

union specifiers, 481 

union type specifier, name space of, 
253 

unions, 271-278 
confusion with casts, 273 
initializing, 275 



www.manaraa.com

612 

memory allocation of, 272 

UNIX operating system, 5 
and C runtime library, 405 
cc command, 12 
compiling and linking, 12 
echo program, 309 
110, 340, 343 
strategy for declaring global 

vapables, 228 
tools available with the, 395 

unnamed bit fields, 256 

unsigned char type specifier, 44 

unsigned constants, 49 

unsigned integers, 44-45 

unsigned long int, converting strings 
to, strtoul() function, 458 

unsigned long type specifier, 44 

unsigned short type, 61 

unsigned short type specifier, 44 

unsigned type specifier, 44-45, 
67-69 

unsigned types, mixing with signed 
types, 67-69 

unwinding, in recursive calls, 308 

update modes, 429 

uppercase characters 
changing to lowercase, 411 
testing for, 412 

USHRT_MAX macro, 497 

v 
va_arg() macro, 426 

va_end() function, 426 

va_startO macro, 425 

value-preserving conversions, 68 

variable argument lists, 425-426 
vfprintf() function, 453 
vprintf() function, 454 

variable arguments lists, vsprint/() 
function, 454 

variables, 21-22 
addresses of, 21, 56 
names of, 22, 222 

variant records, 275-278 

version skew, 396 

Index 

vertical tab, escape character sequence 
\v,50 

vfprintf() function, 453-454 

vi text editor, 12 

visibility, of names, 222, 223 

VMS operating system, 5 

void type specifier, 74-75 
pointers to, 240 
used as function return type, 284, 

291 

volatile storage class modifier, 
233-234, 236 

volatile variables, and setjmp() and 
longjmp (), 420 

vprintf() function, 454 

vsprint/() function, 454 

w 
while statement, 95-97 

syntax of, 95 

whitespace characters, 26 

Wirth, Niklaus, 382 

writing strings, 184-185 

writing to files, 350-357 
fprintf() function, 431 
fputs() function, 432 
fwrite() function, 435 
putcO function, 444 
puts() function, 445 

writing to stdout 
printf() function, 436 
putchar() function, 444 

x 
X3J11 Technical Committee, 6 

v 
yacc utility, 337 

z 
zero, representation of, 44 




